Preface

The use of CNC-machines will still increase in the future.

Not only in industrial production also in small workshops conventional machines will be replaced by CNC-machines.

The application of CNC-technics is not bound to the classic machine tools such as lathes, milling machines or to the metalworking area. One could say, nearly every day a new application of CNC technics is realized. Practically all occupations such as technical designer, technical manager or salesman, skilled worker, methods engineer, controller, etc. will be confronted with CNC-technology in many ways.

CNC basic knowledge is important for everyone of them. How spezialized this knowledge must be, will depend on the specific occupation.

EMCO MAIER \& CO. is also producer of CNC production machines and since a long time experienced and active in technical education worldwide.

After producing the EMCO COMPACT 5 CNC which is used worldwide successfully for years, the EMCO F1-CNC has been developed.
As the method and the concept of the EMCO COMPACT 5 CNC has been very successful, we designed the F1.CNC also that way: the student should work on the machine from the very first hour.
 feptoduction, sound tacks of any and every kind, transiaton into foreign languages, reprints of, extracts from the text

1. General

- Technological data
- Finding the Chip Removal Values, Speeds
- Mounting the Tools
- Chucking the Workpieces

Technological data

1. Cutting speed (Vs)

$V_{s}(m / m i n)=\frac{d(\mathrm{~mm}) \times \pi \times S(\mathrm{mpm})}{1000}$
$V_{s}=$ Cutting speed
d $=$ Diameter of workpiece
$S=$ Main spindle speed

The maximum cutting speed depends on

- Material of workpiece:
ine higher the resistance of the meterial, the lower the cutting speed.

The charts contain the following date:
$v_{s}=44 \mathrm{~m} / \mathrm{min}$ for aluminium (Torradur B)
$V_{s}=35 \mathrm{~m} / \mathrm{min}$ for soft steel
soft plastics
$V_{5}=25 \mathrm{~m} / \mathrm{min}$ for tool steed
haxd plastics

- Material of tool:

Carbide tools allow higher cutting speed than HSS tooss.

- values given in the charts are for His tools.

2. Spindle speed (S)

```
Yow qalculate the speed of the milling spindle from cutting speed and dimmeter of milling cutter.
```

$$
S(\mathrm{rgm})=\frac{\mathrm{V}_{5}(\mathrm{~m} / \mathrm{min}) \times 1000}{\mathrm{~d}(\mathrm{~mm}) \times n^{\prime}}
$$

3. Feed Rate and Depth of Cut

$F=\mathrm{Feed}$ rate (mp/min)
$t=$ Depth of cut (ma)
Generaily: feed rate and cutting speed depend on

- workpiece material
- performance of machine and
- geonetry of milling cutter.

Material of workpiece
The higher the material resistance the larger the feed and the depth of cut (Iimitation by milling cutter geometry).

The charts contain orientation values for the Fl -CNC.

Connection $F-t$
The Larger "t" the smallex "F" and vice versa.

Procedure

The technological data are written into the tool specification sheet.

Finding the feed rate and the depth of cut:

Material: almminium

You can also proceed in a different way:

Finding the speed of rotations:

The same procedure applies for drilining.

PS: Downcut milling - Conventional Milling

The specific knowledge is presupposed. However, with the Fi-CNC the differen ces may be neglected.

Milling

Depth of cut - Cutter diameter - Feed

Drilling

Diameter of drill bit . Feed

Speed (of rotation) - Cutting speed - Feed

Attention:

Wher plunging in with cutter, halve feed values of mill chart.

Service and Maintenance of Machine

```
Lubrication:
Lubricate guideways of longitudinal, cross
and vertical slide daily using oil gun (1
nipple on vertical slide, 2 nipples left
side underneath longituainal slide).
    Pressure resistant, corrosion-pro-
    tective oil with slip-stick reducing
    characteristics.
    73 mm/sec (cSt) reference tempera-
    ture 400}\textrm{C}\mathrm{ .
    E.g. CASTROL MAGNA BD 68
    This corresponds to the CINCINNATI
    Specification P47.
Spindle taper for tool mounting
Interior taper of mair spindle and tool taper
have to be free of grease and aust (force
locking)/
```


Safety measures

Pay attention to the general and specific milling safety rules. The knowledge about them is pre-supposed.

Raw material

If you use aluminium, take only machinable

 aluminium.
Advisable material:

Torradur B, Al, Cu, Mg. PB F38, material no. 3.1645.51 according to DIN 1725/1747 or similar.

Tools

```
Use high quality and well sharpened tools only.
```


Clamping of Tools

Attention:

Clamping with coilet chuck

 with the collet chuck.

```
Spindle taper and tool taper must be dirt-
and dust-free.
```

and dust-free.

```

Tools with cylindrical shaft are clamped

\section*{Note:}
- Put collet into nut inclined so that the eccentric ring grips the groove of the collet. Screw nut with collet onto collet chuck.


\section*{Clamping of tools}

Put tool into collet and tighten nut with cylindrical pin in clockwise direction. For counter-holding of main spindle put cylinaxical pin into collet holder.

Taking out the collet:
Unscrew nut. The eccentric ring in the nut presses the collet out when unscrewing.

Maintenance
Use oil and clean collet and collet chuck after use. Chips and dirt can damage the tapers and influence the precision.

Collets
You find the clamping capacity in inch and metric engraved on the collets. Diam meters smailer or larger than indicated must not be clamped.


\section*{Clamping with shell end mill arbor}

Using the arbor you can clamp tools up to a bore of 16 mm . The 4 spacing collars serve for adjusting the different width of the milling cutters.

\title{
Clamping Possibilities for Workpieces
}


\section*{Clamping bars}

The clamping bars are mounted directiy onto the silde depending on the relative workpiece.


Machine vice with stop
Width of jaw: 60 mm
Clamping capacity: 60 mm


Stepped clamping shoe
```

Height: 60 mm
For clamping a workpiece you need
at least two clamping shoes.

```

\section*{3-jaw chuck ( \(2 \times 3\) Jaws)}

For holding of round, triangular and hexagonal workpieces centrically.

\section*{4.jaw chuck ( \(2 \times 4\) jaws)}

For holding of round, square and octogonal workpieces centrically.

\section*{4-jaw independed chuck}

For holding of workpieces centricalily and eccentrically.


\title{
The Dividing Attachment
}

\section*{Operating tips}


T -slots of the dividing attachment

TECHNICAL DATA
Diameter of rotary table: 150 mm Worm reduction: 1:40

T-slots according to factory standard
Number of holes in dividing plates: \(27,33,34,36,38,39,40,42\)

\section*{OPERATING ELEMENTS}

Clamping levers for rotary table (1):
Clamping levers are loosened during the dividing operation itself, but must be clamped before every machining operation.

Indexing pin with handle (2):
During direct dividing from \(15^{\circ}\) to \(15^{\circ}\), the pin rests into the parameter notones of the rotary table. During indirect dividing (worm dividing) or free dividing by means of the graduated scale, the indexing pin must be pulled out and swivelled to the left.

The graduated scale (3) is for controlling the divisions.

Crank handle with index plunger (4) moves the worm which is engaged with the wormwheel of the rotary table during indirect dividing.

The shears serve to facilitate adding the number of holes when a fraction of a turn is to be added.

Disengaging and engaging the worm:
The allen head screw (5) is loosened. When the dividing plate is turned counterclockwise, the worm and wormwheel. axe disengaged. The rotary table can be turned by hand for direct indexing. By turning the dividing plate clockwise, worm and wormwheel are engaged. To facim litate engagement of worm and wormwheel, the rotary table should be moved slightly by hand.
The allen head scxew (5) must again be retightened.

\section*{Types of Dividing}
```

Indirect dividing:
Indirect dividing offers many more dim
viding possibilities and is more accum
rate because of the worm reduction of
1:40.
Indirect dividing. method:
If the crank handle is turned 40 times,
the rotary table makes 1 revolution
(360%). With help of the dividing
plates, exact fractions of turns can be
executed.

```

Direct dividing:
Worm and wormwheel are disengaged.
Possibility 1:
Dividing by means of the indexing pin. Dividing possibility from \(15^{\circ}\) to \(15^{\circ}\) (i.e. maximum of 24 divisions within \(360^{\circ}\) ).

Possibility 2:
The dividing can be done freely with the aid of the graduated scale on the rotary table.

\section*{Note}

With indirect dividing the indexing pin is always disengaged. For manufacturing a workpiece the rotary table has to be fixed.

The indexing chart:
1st column: indicates number of divisions per \(360^{\circ}\)

2nd column: shows the corresponding angle of the division
3ra column: shows the number of \(360^{\circ}\) crank handle revolutions which are necessary

4th column: shows the number of holes to be added for each incex plate

\section*{Example of an indirect dividing operation:}

Desired division: 13 divisions in \(360^{\circ}\)

From the indexing table it can be seen that at the desired division 13, 3 full crank turns must be made plus a fraction turn of 3 additionsl holes on the indexing plate 39.

\section*{Practical execution:}
4. The indexing plate with 39 holes is

2. in the indexing table one sees that at the division 13,3 full turns plus ; 3 holes on the 39 plate have to be added. Therefore, the shears are fixed so that they incluce 4 holes.

3. The indexing plunger is placed in a hole of the 39 plate marked black on the drawing) and the left shear arm moved until it touches the pin of the plungex.

tion is completed.
5. Next dividing operation: cribed in 4. above.

NOTE: The shears may not be moved during the dividing operation, otherwise they do not sexve their purpose as an orientation aic.

NOTE: IE a larger number of holes has to be reached than the maximum opening of the shears allow, you have to set the difference of holes between the shears.

\section*{Example}

21 divisions per \(360^{\circ}\) have to be carried through. From the chart one can see that one full turn plus the fractional turn of 38 holes on the disc 42 have to be carried through. 38 holes cannot be set.
Thus: \(42-38=4\) holes. When dividing you make one additional tum ( 2 turn alltogether) and turn back the difference of 4 holes (the shears comprise 5 holes).
4. Execution of the dividing operation: 3 full turns plus the fractional tum of the 3 added holes are made: that means that the plunger is placed in the black hole. One dividing opera-
 The shears are turned until the left arm touches the pin again; the next dividing operation follows as des-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{index table for MAXIMAT} & \multicolumn{15}{|l|}{\begin{tabular}{l}
Formula for the Calculation of the Hole Numbers Required \\
\(z=\) No. of divisions required for one revolution of the workpiece. \\
\(\mathrm{K}=\) No. of revolutions of handle for a complete revolution of the workpiece. \\
\(n=\) No. of revolutions of handle for one dividing move: \(n=\frac{k}{2}\) Worm reduction of dividing head \(1: 40\); i. e. \(K=40\).
\end{tabular}} \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{E
0
0
0
02
25} & \multicolumn{8}{|c|}{Amount of holes to be added for each index plate} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{8}{|c|}{Amount of holes to be added for each index plate} \\
\hline & & & 27 & 33 & 34 & 36 & 38 & 39 & 40 & 42 & & & & 27 & 33 & 34 & 36 & 38 & 39 & 40 & 42 \\
\hline 2 & 180 & 20 & & & & & & & & & 32 & & 1 & & & & 9 & & & 10 & \\
\hline & 175 2 & 19 & 12 & & & & & & & & 33 & & 1 & & 7 & & & & & & \\
\hline & 170 & 18 & 24 & & & & & & & & 34 & & 1 & & & 6 & & & & & \\
\hline & 160 & 17 & 21 & & & & & & & & 35 & & 1 & & & & & & & & 6 \\
\hline & 150 & 16 & 18 & & & & & & & & 36 & \(10^{\circ}\) & 1 & 3 & & & 4 & & & & \\
\hline & 140 & 15 & 15 & & & & & & & & 38 & & 1 & & & & & 2 & & & \\
\hline & 130 & 14 & 12 & & & & & & & & 39 & & 1 & & & & & & 1 & & \\
\hline & 125 & 13 & 24 & & & & & & & & 40 & \(9^{\circ}\) & 1 & & & & & & & & \\
\hline \multirow[t]{3}{*}{3} & 120 & 13 & 9 & 11 & & 12 & & 13 & & 14 & 42 & & & & & & & & & & 40 \\
\hline & \(110^{\circ}\) & 12 & 6 & & & & & & & & 44 & & & & 30 & & & & & & \\
\hline & 1000 & 11 & 3 & & & & & & & & 45 & \(8^{\circ}\) & & 24 & & & 32 & & & & \\
\hline \multirow[t]{3}{*}{4} & 90 & 10 & & & & & & & & & 48 & & & & & & 30 & & & & 35 \\
\hline & \(80^{\circ}\) & 8 & 24 & & & & & & & & 50 & & & & & & & & & 32 & \\
\hline & 75 & 8 & 9 & 11 & & 12 & & 13 & & 14 & & 7 & & 21 & & & 28 & & & & \\
\hline \multirow[t]{3}{*}{5} & \(72^{\text {c }}\) & 8. & & & & & & & & & 52 & & & & & & & & 30. & & \\
\hline & \(70^{\circ}\) & 7 & 21 & & & & & & & & 54 & & & 20 & & & & & & & \\
\hline & 65. & 7 & 6 & & & & & & & & 55 & & & & 24 & & & & & & \\
\hline 6 & \(60^{\circ}\) & 6 & 18 & 22 & & 24 & & 26 & & 28 & 56 & & & & & & & & & & 30 \\
\hline & 55. & 6 & 3 & & & & & & & & 60 & \(6^{\circ}\) & & 18 & & & & & & & \\
\hline \multirow[t]{2}{*}{7} & & 5 & & & & & & & & 30 & 64 & & & & & & & & & 25 & \\
\hline & \(50^{\circ}\) & 5 & 15 & & & & & & & & 65 & & & & & & & & 24 & & \\
\hline 8 & 45. & 5 & & & & & & & & & 66 & & & & 20 & & & & & & \\
\hline 9 & 40. & 4 & 12 & & & 16 & & & & & 68 & & & & & 20 & & & & & \\
\hline 10 & 36 & 4 & & & & & & & & & 70 & & & & & & & & & & 24 \\
\hline 11 & & 3 & & 21 & & & & & & & 72 & \(5^{\circ}\) & & 15 & & & 20 & & & & \\
\hline 12 & 30 & 3 & 9 & 11 & & 12 & & 13 & & 14 & 76 & & & & & & & 20 & & & \\
\hline 13 & & 3 & & & & & & 3 & & & 78 & & & & & & & & 20 & & \\
\hline \multirow[t]{2}{*}{14} & & 2 & & & & & & & & 36 & 80 & & & & & 17 & 18 & 19 & & 20 & 21 \\
\hline & 25 & 2 & 21 & & & & & & & & 84 & & & & & & & & & & 20 \\
\hline 15 & \(24^{\circ}\) & 2 & 18 & 22 & & 24 & & 26 & & 28. & 85 & & & & & 16 & & & & & \\
\hline 16 & & 2 & & & 17 & 18 & 19 & & 20 & 21 & 88 & & & & 15 & & & & & & \\
\hline 17 & & 2 & & & 12 & & & & & & 90 & \(4^{\circ}\) & & 12 & & & 16 & & & & \\
\hline 18 & \(20^{\circ}\) & 2 & 6 & & & 8 & & & & & 95 & & & & & & & 16 & & & \\
\hline 19 & & 2 & & & & & 4 & & & & 96 & & & & & & 15 & & & & \\
\hline \multirow[t]{2}{*}{20} & \(18^{\circ}\) & 2 & & & & & & & & & 100 & & & & & & & & & 16 & \\
\hline & \(16^{\circ}\) & 1. & 21 & & & & & & & & 120 & \(3^{\circ}\) & & 9 & 11 & & 12 & & 13 & & 14 \\
\hline 21 & & 1 & & & & & & & & 38 & 180 & \(2^{\circ}\) & & 6 & & & 8 & & & & \\
\hline 22 & & 1 & & 27 & & & & & & & 200 & & & & & & & & & 8 & \\
\hline 24 & \(15^{\circ}\) & 1 & 18 & 22 & & 24 & & 26 & & 28 & 240 & & & & & & 6 & & & & 7 \\
\hline 25 & & 1. & & & & & & & 24 & & 270 & & & 4 & & & & & & & \\
\hline 26 & & 1. & & & & & & 21 & & & 360 & 10 & & 3 & & & & & & & \\
\hline 27 & & 1 & 13 & & & & & & & & & \(40^{\prime}\) & & 2 & & & & & & & \\
\hline 28 & & 1 & & & & & & & & 18 & & \(30^{\prime}\) & & & & & 2 & & & & \\
\hline 30 & \(12^{\circ}\) & 1 & 9 & 11 & & 12 & & 13 & & 14 & & \(20^{\prime}\) & & 1 & & & & & & & \\
\hline
\end{tabular}
Chapter 2: Handoperation
- Operating element (survey) ..... 2.2
- Positioning of milling cutter ..... 2.4
- Traverse indication ..... 2.7
- Input of X, Y, Z values ..... 2.8
- Switching feed motors "Curventless" ..... 2.11

\section*{Traverse - Hand Operation}

\section*{Display}

After switching on the machine, the ticure \(O\) appears. Lamps \(X, X\) or \(Z\) are on.


If you traverse in \(\pm \mathrm{x}\), the lamp X Lights up. When you take your finger from the key, the traverse distance is shown in \(1 / 100 \mathrm{~mm}\) on the VDU. With a distance of 2,45 the display indicates 245.

\section*{Monitor}

The screen shows zero for \(X, Y, 2\) when you switch it on.


With the exception of rapid traverse the indication is shown continuously in steps of \(0,5 \mathrm{~mm}\).


If you press the \(z-k e y\), the light jumps to the \(Z\)-lamp. After you lift your finger from the key, the traverse distance appears (with \(6,28 \mathrm{~mm} 628\) will appear)


Minus sign or display


\section*{Input of X, Y, Z Zero-Values from any chosen Milling Position}


The display shouid indicate zero, in case the milling cutter stands at a given point ( \(X=0, Y=0, Z=0\) ).

You can program the \(X, Y, Z\) aisplays to indicate zero.

The milling cutter is at a distance of \(22,15 \mathrm{~mm}\) to the workpiece edge in X . The display indicates whatever value.

In case the milling cutter traverses in +X direction by \(22,15 \mathrm{~mm}\), then the display should indicate the value \(\mathrm{X}=0\).

\section*{Procedure:}
1. The lamp \(x\) on the display lights up
2. Press INP - the Lamp X flashes
3. Put in the value \(2[2] 5\) (no plus/ minus sign, because the miling cuttex should indicate with plus "traverse direction \(O^{\prime \prime}\) ).
4. Press key INP. The flashing of the X-lamp stops.

You can enter the \(Y, Z\) values in the same way.


\section*{Application of Path Programming in Hand Operation Mode}

Zero point for the dimensioning is the workpiece edge. The milling cutter shatl move to this point. The displays shall be set zero.

\section*{Procedure:}
1. Scratch surface, set Z-display zero.

2. Scratch surface in \(X\)-direction. Put in value of milling cutter radius \(r\).
3. Scratch surface in \(Y\)-direction. Put in value of miling cutter radius \(x\).

\section*{Note:}

You can traverse after scratching as you like. If you program the zerompoint, you have to add to the \(\mathrm{X}, \mathrm{y}\) display the radius value and put it in.


\section*{Exercise:}
1. Program the display \(X, Y, Z=0\) if the milling cutter is positioned onto the eage.
2. Move the mililing cutter to the indicated position.

\section*{Switching Feed Motors "Currentless"}
```

When switching on the machine the feed
motors are currentless.
If you have - in hand- or CNC-operation
mode - moved the slides the feed motors
stay under power.

```


Switching curcentless - with no program being stored
1. Switch to CNC-operation mode: Press B/C key.
2. Press key \(\longrightarrow\). The light jumps to \(G\).
3. Key in 66. The number appears on the VDU.
4. Press key INP. Now the feed motors are switched currentless.

Switching currentless - with a program being stored


G64 is a pure switching function. It is not stored.
1. Pxess key \(\longrightarrow\) so that \(G\) light gets on.
2. When a number appears on the VDU, press DEL.
3. Key in 6 .
4. Press key INP. Now the feed motors are switched currentiess.

\section*{Operating Elements Control Elements Hand Operation}

1. Main switch

Turn key to the right. Machine and control part are under power (except emergency stop button is pressed).
2. Control 1amp main switch

When main switch is ori, lamp is one

\section*{3. Emergency stop button}

Control unit, feed motors and main motor are cut off from power by pressing emergency stop button: turn button to the left - it will jump back to orginal position. Main switch has to be switched on again.
4. Switch for main spindie

Turn switch to the right.
5. Turning knob for speed control of main spindle
6. Ammeter

Shows power consumption of main spindle motor. In order to protect motor against overload, the power consumption should not surpass 2 A with \(220-240 \mathrm{~V}\) or 4 A with \(100-110 \mathrm{~V}\).
7. Feed keys for longitudinal, cross and vertical slide
8. Rapid traverse key

If keys for feed and rapid traverse axe pressed together, then the relative slide will move with rapid traverse. speed.
9. Turning knob for setting the feed rate
10. Inch/metric switch and switch for changing the axis system
11. Digital read-out for slide movement
\(\pm X, \pm y, \pm Z\) axe shown in \(1 / 100 \mathrm{~mm}\) or \(1 / 1000\) inch.

Plus movement without sign Minus movement by a Iight beam \(-125\)
\(\mathrm{X}-1,25 \mathrm{~mm}\) ox -0.125 inch
12. Control lamp for hand operation
13. H/C switch key: hand operation/CNC operation

If you press the \(\mathrm{H} / \mathrm{C}\) key the light of the control lamp hand operation will jump to CNC opexation (operation mode: CNC). By pressing the key once again the light will jump back operation mode: hand operation).

\section*{14. DEL key}

The \(X, Y, Z\) values are set to zero.

\section*{15. The \(\rightarrow\) key}

With the \(\longrightarrow\) key you can switch from \(X\) to \(Y\) to \(Z\) without movement of slides.
16. The LNP key

With the INP key you enter the values for slide movements.
17. M-key

Activates switching exits.

\title{
Hand Operation F1-CNC
}

Positioning of the Milling Cutter

\section*{1. Scratching front sides and top side}
```

With midinng most measurements mefer to
outer edges. In orger to use. the medsurem
ments of the technical drawing you have
to "zero-set" the djsplay and use as re-
Ference/starting point the outer edges.

```

\section*{Example}
```

Milling cutter with dia. lomm.

```
Move milling cutter in 2 -direction
until you scratch surface slightly.
Set Zmisplay to zero (press key
DEL) .

- Scratch front side in X-direction.
- Set X-display to zero (press key DELJ)

- Scratch Exont side in Y-direction.
- Set Y*display to zexo (press key DEL)


\section*{2. Zero-setting of Display to Zero Point of Dimensioning (Example: Milling)}


Example: Mitling of groove
- The groove is milled using a 8 mm cuttex.
- Zero point for the dimensioning is the workpiece edge and surface.
- The measures refer to the center of the milling cutter.


\section*{Consequence}
```

Move axis of milling cutter to edge of workpiece.

```
a) Scratching of all 3 surfaces and zew ro-setting of \(X, Y_{f} Z\).
b) Move by value of milling cutter radius into \(x\)-direction. Set \(X\) to "zero".


\(N \quad \mathbf{G} \quad X Y Z \quad F\)
 \(\mathrm{D}, \mathrm{JK} \quad \mathrm{T} M\)

\section*{DEL}


\section*{Exercise}

Move milling cutter such that all display values are at "zero".

\section*{Exercise}

Mill a recess as in arawing. Enter the Following values:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Spindie speed \\
\(S \quad(x p m)\)
\end{tabular} & \\
\hline Feed mm/min & \\
\hline Infeed in \(X(m m)\) & \\
\hline Infeed in \(Z(m m)\) & \\
\hline
\end{tabular}

Pay attention to set correct feed.

\section*{Chapter 3 \\ CNC-Operation - Survey}
- Operating and control elements 3.2-3.3
- Preparatory functions, miscellaneous-/Switching functions 3.4-3.5
- Arlarm signs \(\quad 3.6\)
- Possible inputs 3.7
\(\begin{array}{ll}\text { - Operation CNC } & \\ \text { Operation magnetic tape } & 3.9\end{array}\)

\section*{Operating Elements Control Elements CNC-Operation}

1. Main switch with removable key * Memosy is being cleared when switching ○f゙́․
2. Control lamp shows the power supply of machine and control unit.
3. Emergency stop button with interiock. Unlocking of button: turn button to the left, To switch on machine, turn main switch to zero and to 1 again. When switching off also memory will be cleared.
4. Optional switch fox axis system and for metric ox inch mode of operation.

5. Switch for main spindle

position 1 (main spincle oN, without Mo3)

Position CNC: main spindle is switched on by programming MO3 and switched off by MO5, MO6 (with \(\mathrm{F} \neq \mathrm{O}\) ) and M30.
6. Ammeter
7. Magnetic tape
8. H/C switch key Manual/CNC operation
9. Control lamp CNC operation
10. START key

The program is being worked off
12. VDU (display):

Indicates values for address letters and modes of operation
13. Control lamp address letters
14. Control of milling spindle speed
11. Keys for program input, correction, storing of program on tape, V24 operation etc. (see detailed explanations)

15.1. Number keys \(0-9\)
11. 2.
\(\square\) The minus sign key To enter minus values the minus sign \(\square\) has to be pressed after input of numbers.
11.3. INP key (INPUT = storing)

Storing key
11.4. DEL key (DELETE = exase) Erasing key
11.5. FWD key (FORWARD)

Progxam jumps forward block by block
11.6. RREV key (REVERSE)

Progranl jumps backwaras block by block
11.7. \(\rightarrow\) Arrow key

Display jumps word by word
11.8. M key: key for entering of miscellaneous functions.

\section*{Survey}

\section*{Preparatory Functions, G-Codes}

GOO Rapid traverse
V : \(\mathrm{N} 3 / \mathrm{GOO} / \mathrm{X}^{ \pm} 5 / \mathrm{Y}^{ \pm} 4 / \mathrm{Z}^{ \pm} 5\)
F: \(N 3 / \mathrm{GOO} / \mathrm{X}^{ \pm} 4 / \mathrm{Y}^{ \pm} 5 / \mathrm{Z} \pm 5\)
Q01 Linear interpolation
V : \(\mathrm{N} 3 / \mathrm{GOL} / \mathrm{X}-5 / \mathrm{Y} \pm 4 / \mathrm{Z}^{ \pm} 5 / \mathrm{F} 3\)
H: \(\mathrm{N} 3 / \mathrm{GO} / \mathrm{X}^{+} 4 / \mathrm{Y} \pm \mathrm{S} / \mathrm{Z} \pm 5 / \mathrm{F} 3\)
GO2 Circuiar interpolation clockwise
GO3 Circular interpolation counterclockwise Quadrants:
\(\mathrm{V}: \mathrm{N} 3 / \mathrm{GO}_{\mathrm{GO}}^{\mathrm{GO}} / \mathrm{X} \pm 5 / \mathrm{Y} \pm 4 / \mathrm{Z} \pm 5 / \mathrm{F} 3\)
H: \(N 3 / \frac{\mathrm{GO} 2 / \mathrm{X}^{ \pm} / 4 / \mathrm{Y} \pm 5 / \mathrm{CO}^{ \pm} 5 / \mathrm{F} 3}{}\)
N3/M99/J2/K2 (Partial circles)
G04 Dwel1
N3/GO4

G21 Empty block
N3/G21
Q25 Sub-routine program call
N3/G25/L(F) 3
G27 Jump instruction
N3/G27/L(F) 3

G40 Tool radius compensation cancelled N3/G40

G45 Add tool radius N3/G45

G46 Subtract tool radius N3/G46

Q47 Add tool radius twice

N3/G47
G48 Subtract tocl radius twice

N3/G48

G64 Feed motors without current ) (switching function)

N3/G64

G65 Magnetic tape operation (switching function)

N3/G65

G66 Activating RS 232 Interface N3/G66

G72 Pocket milling cycle
V: N3/G72/X \({ }^{+} 5 / Y^{+}-4 / Z^{+} 5 / F 3\)
H: N3/G72/X+4/Y士5

G74 Thread-cutting cycle
(1eft-hand)
N3/G74/K3/2 5 5/F3

G81 Fixed boring cycle N3/G81/2 \({ }^{ \pm} 5 /\) F3

G82 Fixed boring cycle with dwell N3/G82/Z \({ }^{+5 / F 3}\)

G83 Fixed boring cycle with chip removal
N3/G83/Z \({ }^{+} 5 / \mathrm{F} 3\)


\section*{Miscellaneous or Switching Functions}
\begin{tabular}{rl} 
M00 - & Dwell \\
N3/M00
\end{tabular}

M03 - Milling spindle ON, clockwise N3/M03

M05 - Milling spindle OFF N3/M05

M06 - Tool offset, milling cutter radius input N3/M06/D5/S4/Z \(\pm 5 / \mathrm{T} 3\)

M17 - Return to main program N3/M17

M08
M09
M20 Switching exits
M21 N3/M2
M22
M23
M26 - Switching exit - impulse N3/M26/H3

M30 - Program end N3/M30

M99 - Parameters circular interpolation (in connection with G02/03) N3/M99/J3/K3

\section*{Alarm Signs}
```

AOO: Wrong G/M code
AO1: Wrong radius / M99
AO2: Wrong z-value
Ao3: Wrong F-value
AO4: Wrong z-value
AO5: M30 code mussing
A06: MO3 code missing
AO7: No significance
A08: Tape end with cassette operation SAVE
AO9: Program not found
A1O: Writing protection
A11: Eoading mistake
A12: Checking mustake
A13: Inch/mm switohing with full pro-
gram memoxy
A14: Wrong mill head position/path in-
cxement with LOAD _ / M or mod/M
A15: Wrong Y-value
A16: Value of milling cutter radius
missing
A17: Wrong sub-routine
A18: Path milling cutter compensation
smaller zero

```

\section*{Possible Inputs}
(Otherwise alarm signs)
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Metric \\
Values
\end{tabular} & Unit (mm) & \begin{tabular}{l}
Inch \\
Values
\end{tabular} & Unit (inch) \\
\hline \(\mathrm{x}_{\mathrm{V}}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & 0-7999 & \(1 / 1000^{\prime \prime}\) \\
\hline \(\mathrm{X}_{\mathrm{H}}\) & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & - \(1 / 1000^{\prime \prime}\) \\
\hline \(Y_{V}\) & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & \(1 / 1000^{\prime \prime}\) \\
\hline \(Y_{\text {H }}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & 0-7999 & \(1 / 1000^{\prime \prime}\) \\
\hline \(\mathrm{Z}_{\text {VH }}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & 0-7999 & \(1 / 1000^{\prime \prime}\) \\
\hline Radii & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & \(1 / 1000^{\prime \prime}\) \\
\hline \(D(X)\) milling cutter radius with M06 & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & \(1 / 1000^{*}\) \\
\hline F & 2-499 & \(\mathrm{mm} / \mathrm{min}\) & 2-199 & \(1 / 10^{17} / \mathrm{min}\) \\
\hline \(T(F)\) tool address M06 & 0-499 & 1 & 0-199 & 1 \\
\hline L(F) jump instructions & \multicolumn{4}{|c|}{0-221} \\
\hline H(F) exit signs M26 & \multicolumn{4}{|c|}{0-299} \\
\hline J/K circular parameter & \multicolumn{4}{|c|}{0-90} \\
\hline
\end{tabular}

\section*{Adresses}

\author{
\(\mathbf{N}, \mathbf{G}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{F}, \mathbf{D}, \mathbf{J}, \mathbf{K}, \mathrm{L}, \mathbf{M}, \mathbf{T}, \mathbf{S}, \mathbf{H}\)
}

\section*{Operation CNC}

INP Storing of word contents

DEL Deleting of word contents
EWD Forward in program block by biock
[EEV] Backward in program block by block
\(\square\) Erorward in block word by word
\(M\) Input of \(M\)-functions

Program hold:
\[
\text { INP }+ \text { FWD }
\]

Program interruption
\[
\mathrm{INP}+\mathrm{REV}
\]

Delete program
DEL + INP
First DEL then INP
DEL remains pressed.
Delete alarm
INP +REV
Insert block
\(\omega+I N P\)
Delete block
\(\sim+D E L\)
Single block mode
12 etc. + START

Testrun:

\section*{Operation - Magnetic tape}

Storing of program on tape
G65 [INP - FWD \(\rightarrow\) Put in program number \(\rightarrow\) INP

Transmit program from tape to memory
G65 INP \(\rightarrow\) INP \(\rightarrow\) select program number \(\rightarrow\) INP

G65 INP


\section*{Chapter 4 \\ CNC-Basics}
CNC-lathe - The control ..... 4.1
CNC-machine - Main elements ..... 4.2-4.3
What happens in CNC-manufacture ..... 4.4-4.7
Differences in manufacture using a handoperated or a CNC-machine ..... 4.8-4.9
This you are going to learn ..... 4.11
What is programming ..... 4.13-4.15
The coding standards ..... 4.17-4.19
Program structure ..... 4.21-4.23
G00/G01 ..... 4.25
Description of path lengths for slide movements ..... 4.27
The CNC-program (structure) ..... 4.29
The address words of the program sheet F1-CNC ..... 4.31-4.33
Standardization of axis systems for CNC-machines ..... 4.35-4.41
Concept of programming - Methods of programming ..... 4.43
Dimensions of drawings ..... 4.45
The modes of programming ..... 4.47
G90/G91 ..... 4.49-4.51
Determining the coordinates for programming in absolute mode 4.53-4.55d Information to the control concerning
the workpiece zero-point
Fixing the origin of the coordinates on the F1-CNC (workpiece zero-point) ..... 4.59
Fixing the zero-point of coordinates with
G92 - Programmed offset of
reference point ..... 4.61-4.69
Various workpiece zero-points in one program ..... 4.71-4.73
Mixed programming ..... 4.75-4.77
Connection: G92 - Zero-point offset/ M06 - Tool lengths compensation ..... 4.79
Some tips for procedure ..... 4.81-4.83
The M-functions ..... 4.85-4.87
Description of block formats ..... 4.89
Types of controls of CNC machine tools ..... 4.91-4.97
Programming - Geometry ..... 4.99-4.143

\section*{CNC-Lathe The Control}


\section*{Meanings in daily use}

The meanings change quite often in their daily use. NC-machines were originally machines with numerical control, but no microprocessor. Today such machines are obsolete. The program was read in directly from the perforated tape.

Today NC-machines comprise all types CNC, DNC or AC types.

\section*{CNC - Machine - Main Elements - \\ A 'humanized" Comparsion}


CNC-Machine - Main Elements


\section*{What happens in CNC-Manufacture}


In the computer nothing happens without the director. There is a strict hierarchy.

What happens if you press the key Srarm?
1. Secretary \(\rightarrow\) Director:
"They pressed START!"
Director asks memory:
"Did they put in program end M30?"
If yes, the program can start.
2. Director \(\longrightarrow\) Specialists:

We want to machine a groove in a certain angle.
```

3. Specialist }\longrightarrow\mathrm{ Director:
"Yes, O.k."
4. Director }->->->\mathrm{ Memory:
"please give me the data!"
5. Memory }\longrightarrow\mathrm{ Director:
X,Y slides have to be moved in ratio
1:4.
6. Director calculates and gives data to chief operator. With the aid of the watch he also determines the ope* rating speed (when threading he waits for the main spindle position).
7. Chief operator \rightarrow Foreman:
Move X slide with feed size Fl and Y slide with feed size E2.
8. Director \longrightarrow Press speaker:
"The block is finished. We work on the next. Let them know!"
```

\section*{What happens in CNC-Manufacture?}

Data Input
Digital read-out


Output element (press speaker)

Interface element (secretary)



Central processing
 unit \(=\) Microprocessor (Director)


Operating program \(=\) EPROMS (Specialists)
CNOMaChine

\section*{What happens in CNC-Manufacture}
```

What knowledge is necessary in order to manu-
facture, using a hand operated or a CNC lathe?

```


\section*{Hand operated machine}

NC-machine


\title{
Differences in Manufacture using a hand operated or a CNC-Machine (Survey)
}


Necessary means
\begin{tabular}{c|l|l}
\(V\) & Lathe & Chucking devices \\
\(V\) & Tools \\
\(V\) & & \\
\hline
\end{tabular}

Necessary knowledge/Capabilities
(to execute operation)
\begin{tabular}{c|c|c}
\hline\(V\) & Reading of technical drawings & \(V\) \\
\hline\(V\) & Knowledge about tool geonetry & \(V\)
\end{tabular}

\section*{Differences in manufacture, using a hand operated or a CNC-machine - continued}
\begin{tabular}{|c|c|c|}
\hline Hand operated machine & Technological information & NC-machine \\
\hline & \begin{tabular}{l}
+ Cutting speed depending on \\
- material of workpiece \\
- tool (HSS, carbide tipped) \\
- type of operation
\end{tabular} & \\
\hline & + Feed rate & \\
\hline & + Cutting depth & \\
\hline & + Performance and dimensions of machine & \\
\hline
\end{tabular}

\section*{Execution}


Operator must know how to control the machine
+ Writing the NC-program

+ Input of NC-progran

+ Preparing the machine
+ Execution

\section*{This you are going to learn \(A\) rough survey}

Set up a CNC-program

Enter all informations into program sheet.
Rules how to write these data have to be learned.


Put in progran

You have to put in the information into the control. The control stores the information. You have to follow certain rules.


Give instruction to manufacture

The control works with the information entered - it calculates and gives instructions to the machine tool.

Check result
\begin{tabular}{l} 
Correct progran \\
Improve (optimize) \\
program. \\
\hline
\end{tabular}

\(\longrightarrow\)


\section*{What is Programming?}

Programming means to feed the computer with such data which it understands.

> In other words, we have to "spoon-feed" the computer, list the data in orderly sequence and in a language which is familiar to the computer, which it understands, so that it can process the information.


The operator does not understand the Chinese commands, because he does not speak this language.


The CNCmachine does not understand the human language.


We have to feed the CNC-machine with data in a language it will understand. This language is "encoded".

\section*{Do you already know programming?}


The instiuctions and informations must be
- in a systematic sequence
- complete
- and accurate.

They are given to the CNC-machine in
a coded form.

\title{
The Coding Standards The program structure for numerically controlled machine tools:
}
```

The program structure for numerically con-
trolled machine tools:
How to code informations and instructions
is defined by standards.

```

\section*{The standards are:}
- Program structure for numerically con trolled machine tools.
- According to DIN 66025 (Gemman Industrial Standards)
- According to ISO 1056 (International Standard), new edition iso 6983.


MOVE LONGITUDINAL SLIDE 10 mm TO THE LEFT \(200 \mathrm{~mm} / \mathrm{min}\)
\[
\text { N... } / \mathbf{G 0 1} / x+10 / F 200
\]

\title{
The Coding of Informations and Instructions (Criteria)
}
```

One could buila a computer which under-
stands instructions in nommal language.
This woula bring about guite some dlsm
advantages:

```
\begin{tabular}{|c|c|c|}
\hline Language information & Criteria & Demands for coding \\
\hline \multirow[t]{4}{*}{Move the longitudinal silde - main spindle being switched on - with a given feed a distance of 25 mm at an angle of \(37^{\circ}\).} & 1 It would be necessary to build a computer for each language (or even for each slang) & - Language neutral \\
\hline & 2 The long instructions are complicated and vague. & \begin{tabular}{l}
- Simple coding \\
- Clear expression
\end{tabular} \\
\hline & 3 The language is practice oriented. This should also be true for CNC-instructions. & - Practice-oriented \\
\hline & 4 The code should be applicable to many different machine types. & - Universally applicable \\
\hline
\end{tabular}

When setting up standards for the program
structure of CNC-machines the aim of the
many experts was to create codes for inm
struction which should be
- as short as possible
- simple
- language neutral
- practice-oriented
- applicable to all machines.

\section*{Program Structure}
```

Coding of the movements
Introduction of the Carthesian coordinates
System.

```


\section*{Coding of slide movements}

The InstructionsMove the vertical slide downwards ( 15 mm )
(2)

Move the longitudinal slide to the left ( 50 mm )
(3)

Move the cross slide forward ( 30 mm )
are neither short nor language-neutral nor simple.

The movements are described using the axis denomination of the Caxthesian Coordinates System.

\section*{For vertical mills}

X -movement: longitudinal slide
\(Y\)-movement: cross slide
Z -movement: vertically

Instruction on direction
is achieved using \(\pm\) sign.


Coded instructions
\begin{tabular}{lll} 
(1) & -Z & 15 mm \\
(2) & +X & 50 mm \\
(3) & -Y & 30 mm
\end{tabular}

\section*{The movement 1 is different to movements 2 and 3.}


\section*{Movement 1}

No chip removal
Speed as large as possible.
Coding:
Rapid traverse \(=\) G00

Movements 2 and 3
Straight movement and chip removal
Feed rate has to be set (depending on cutter dia.. raw material, depth of cut etc.).

Coding
Linear interpolation \(=\mathrm{G} 01\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (J) \({ }^{x}\) (0) & (k) \({ }^{Y}(\mathrm{~S})\) & \(z\) & \(\underset{(L)(T)}{\text { ( }}\) (H) \\
\hline & \(\infty\) & 0 & 0 & \(-1500\) & \\
\hline \(\cdots\) & 01 & 5000 & 0 & & \\
\hline \(\cdots\) & 01 & 0 & 3000 & 0 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Description of Path Lengths for Slide Movements}


Also in this case simple arwangements are made. The statement 'mm' (Mililmeter) is left out. Only the number is written.
\(x-45,325\) means: traverse \(-45,325 \mathrm{~mm}\) in X -direction.

On the Fl-CNC path lengths are programed without decimal point in \(1 / 100 \mathrm{~mm}\) or \(1 / 1000\) inch.

Thus, \(23,25 \mathrm{~mm}\) is programmed 2325 and 1,253 inch is progxamed 1253.

\section*{Sign}

Measures without signs are automatically " \(4^{\text {" }}\) measures.

\section*{The Program Sheet}

All informations and instructions are entered into the program sheet. Further explanations on the following page.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & G
(M) & \[
(\mathrm{N})^{\mathrm{x}}(\mathrm{O}
\] & \[
\text { (א) }{ }^{Y}(S)
\] & 2 & \(\stackrel{\mathrm{F}}{\text { (L) }}\) (1) \(\mathrm{H}_{\text {( }}\) & remarks \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{The CNC-Program (structure)}

The program is written down in the program manuscript.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
G \\
\((\mathrm{M})\)
\end{tabular} & \begin{tabular}{c}
X \\
\((\mathrm{D})\)
\end{tabular} & \(\left.\mathrm{Y}{ }^{\mathrm{Y}} \mathrm{S}\right)\) & z & F \\
\hline 00 & 00 & -3000 & 0 & 0 & \\
\hline 01 & 01 & 0 & -2500 & 0 & 120 \\
\hline 02 & 01 & 1050 & 0 & & 120 \\
\hline 03 & 01 & 0 & -1680 & 100 & 120 \\
\hline 04 & 03 & 2000 & 2000 & & 120 \\
\hline 05 & 00 & 0 & 550 & 1500 & \\
\hline
\end{tabular}

\section*{The program manuscript}

All essential data for the manufacture of a workpiece axe filled in. The composition of this program is called programming.
The structure of such a program is standardized.

\section*{Parts of a program}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
(d)^{x}(0)
\] & \[
(K)^{Y}{ }_{(S)}
\] & z & \(\stackrel{\text { F }}{(L)(H)}\) \\
\hline 00 & 00 & -3000 & 0 & 0 & \\
\hline 01 & 01 & 0 & \(-2500\) & 0 & 120 \\
\hline 02 & 01 & 1050 & 0 & \(Q\) & 120 \\
\hline 03 & 01 & 0 & - 1680 & 100 & 120 \\
\hline
\end{tabular}
1. The block

The program consists of blocks. A biock contains all data necessary to execute an operation (i.e. order: move longitudinal sidae straight on 25 mm , speed \(120 \mathrm{~mm} / \mathrm{min}\).


\section*{3. The word}


A word consists of a letter and a combination of numbers. The letter is called address.

\section*{The Address Words of the Program Sheet/F1-CNC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
(0)^{x}(0)
\] & \[
(\mathrm{K})^{Y}\{\mathrm{~S})
\] & z & (6) \({ }_{\text {(T) }}^{\text {F }}\) (H) \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{1. The \(N\)-acdress:}
\(\mathrm{N}=\) abbreviation of number
The instructions and informations are numbered. We talk about block number. On the \(\mathrm{F} 1-\mathrm{CNC}:\) NOOO up to N221.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(\mathrm{v}){ }^{\mathrm{x}}(\mathrm{D})
\] & \[
\text { (K) }{ }^{Y}(\mathrm{G})
\] & 2 & (L) \(\mathrm{F}_{(1)(\mathrm{H})}\) \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
2. The G-adaress:

Into this colum we enter the key information, i.e. the G-function or preparatory function. You will get to know the various \(G\)-functions in the course of our exercises.

3. The \(X, Y, Z\)-acaresses:

They are the colums for the path data. F1-CNC:
The paths are programmed without. decimal point in \(1 / 100 \mathrm{~mm}\) and/or \(1 / 1000^{\circ}\).
4. The F-address:

F stands for "feed". For each chip removal movement the appropriate feed has to be programmed.
F1-CNC:
The feed is programmed in mm/min or \(1 / 10\) inch/min.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{l}
\(X\) \\
\((0)\)
\end{tabular} & \((K){ }^{Y}(S)\) & \(z\) & \begin{tabular}{c}
\(F\) \\
\((L)(H)\)
\end{tabular} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{5. The M-adaress:}

M stands for "miscellaneous".
M-Functions are called "auxiliary func" tions". The M-values are entered into the G-columr.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
(d)^{x}(\mathrm{D})
\] & \[
\left(K^{Y}{ }^{Y}(S)\right.
\] & 2 & (L) (T)(H) \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & \[
(\mathrm{d})^{x}(\mathrm{D})
\] & \((\mathrm{K}){ }^{\mathrm{Y}}\) (S) & 2 &  \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & \[
\underset{\{\mathrm{d}\}}{\mathrm{x}} \mathrm{D}_{(\mathrm{D})}
\] & \[
(\mathrm{K})^{\vee}(\mathrm{S})
\] & z & \[
\left|\begin{array}{c}
\stackrel{F}{(H)} \\
(L)(H)
\end{array}\right|
\] \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{c}
\(X)\) \\
\((\mathrm{D})\)
\end{tabular} & \({ }_{(K)}{ }^{Y}(\mathrm{~S})\) & \(Z\) & \begin{tabular}{c}
\(F\) \\
\((\mathrm{C})(\mathrm{T})(\mathrm{H})\)
\end{tabular} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{6. The D-address:}

The cutter radius is described under \(D\). Radius \(5 \mathrm{~mm} \rightarrow\) D 500 (compare MO6 Tool compensation).

\section*{7. The S-address:}
```

 S stands for speed.
    ```
    \(2000 \mathrm{rpm} \rightarrow \mathrm{S} 2000\) (compare M06)
8. The T-address:

T stands for tool.
Tool number \(2 \rightarrow\) TO2 (compare tool lengths compensation).
9. The J, K-adaresses:

J, K are parameters for circle programming. These addresses are descxibea in chapter G02/903.
10. The L-address:
is a jump adaress: compare G25, G27.

\title{
Standardization of Axis Systems for CNC-Machines
}
```

The axis systems are standardized for the
various types of machinery according to
ISO 841 and DIN 66217. The basis is the
Carthesian Coordinates system (clockwise).
The right-hand rule can be of quite some help: it shows the position of the axes to one another.

```


\section*{Axis System Milling Machines}

Milling machines and machining centers are of different construction typologie.


Milling head with tool moves.
The mounted workpiece carries out longitudinal and cross movements.


\section*{Description of Cutter Path}
```

If you would have to directly describe the
slide movements, it would need a continuous
rethinking with the various different machine
construction types.
Example: Drilling a hole
Type 1: Move milling head downwards.
Type 2: Move vertical slide upwards.
A confusing situation.

```

\section*{Thus, the important simple statement} for CNC-machines!

The path of the cutter is described.
For the programing it is all the same, whether the slides or the tool move during manufacture.



Axis System
Vertical Mills

\section*{Axis system}

Horizontal mills


\section*{Concept of Programming - Methods of Programming}


\section*{Dimensions of Drawings}

There are different types of dimensioning in technical arawings.

\section*{Incremental dimensioning}

Starting point for the dimensioning of the next point is always the actual point which was described last.


\section*{Absolute dimensioning}

Zero-point for the dimensioning of af points is a remaining fixed point.


\section*{Mixed dimensioning}
* In most technical drawings you find both types of dimensioning. Some measures are given from one common point (absolute) or in the incremental mode (from the actual point described last).


\section*{The Modes of Programming}

It was the aim to achieve a very simple Gescription of the traverse movements.

You can program the points and traverse movements in two different modes - so to avoid changing of dimensions in the drawing.

\section*{G90}
- Absolute mode description
- Absolute moce programing (reference point programming)

\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{l}
\(X\) \\
\((\mathrm{D})\)
\end{tabular} & \((\mathrm{K}){ }^{Y}(\mathrm{~S})\) & \(z\) & \begin{tabular}{c}
F \\
\((\mathrm{L})(\mathrm{H})\)
\end{tabular} \\
\hline & & & & & \\
\hline
\end{tabular}
- You start from one point and describe all other points.
- The zero-point of the coordinates system can be defined by you.

To instruct the computer how to calculate the values it is necessary to give a key information.

This is achieved by a G-instruction.

\section*{G91}
- Incremental mode description
- Incremental mode programing

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (J) \({ }^{\mathrm{X}}\) (D) & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & z & Frim(H) \\
\hline & & & & & \\
\hline
\end{tabular}
- You describe point 1 starting from point 0 .
- You describe point 2 starting from point 1.
- You describe point 3 starting from point 2, etc.

You have to imagine the coordinates sysm tem shifted into the relative point.

\section*{When do you have to give the G90/G91 information to the computer? \\ The initial status of a CNC-machine}


When you switch on the main switch the machine is in mode of operation "hand operation" = initial status.

If you press the \(\mathrm{H} / \mathrm{C}\) key, the mode of operation is switched to "CNC-operation".

The "inittal status" of the control is increnental. All traverse movements are calculated in incremental mode.

\section*{G90 - Absolute value programming}

G90 has to be programmed.


G91 - Incremental value programming

You may program G91, however it is not necessary since the control calculates incxementally by itself.


G91 is a self-maintaining modal function. G91 is revoked by 990 .

\section*{Exercise}


\section*{Exercise}

Describe polnts P1, P2, P3, P4, D5 as absolute data.

Write in block NOOO the inEormation for the mode of programming.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\begin{gathered}
G \\
(M)
\end{gathered}
\] & \[
{ }_{(0)}^{x}{ }^{x}
\] & \[
(K)^{Y}(S)
\] & 2 & \[
\frac{F}{(L)}
\] \\
\hline & & & & & \\
\hline - & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Exercise

Describe points P1, P2, P3, P4, P5 3, as incremental data.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
\text { (J) } x^{x}(D)
\] & \[
(\mathrm{K}){ }^{Y}(\mathrm{~S})
\] & \(z\) & (4) \({ }^{\text {(f) }}\) \\
\hline & & & & & \\
\hline & & & & & \\
\hline * & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Determining the Coordinates for Programming in Absolute Mode}

- Where to set the workplece zerompoint is your own decision.
- Pay attention to the signs of the axis.
- Write axis signs and \(\pm\) signs in the drawings not described.


The origin of the coordinates system'can be positioned in any point.

Points may be positioned in any of the 8 squares.

Describe the points in absolute and incremental mode.

\section*{\(X-Y\) plane \(=\) Underneath side of workpiece}


\section*{Absolute}

Incremental
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (J) \({ }^{\mathrm{x}}\) (0) & (K) \({ }^{Y}\) (S) & z & (L)( \({ }_{\text {( }}^{\text {( }}\) ( (H) \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (N) \({ }^{\text {( }}\) ( \()\) & (K) \({ }^{Y}{ }_{(S)}\) & z & \(\stackrel{\mathrm{F}}{\mathrm{F}} \mathrm{H}(\mathrm{H})\) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{X - Y Plane in Center of Body}


Absolute
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \({ }_{\text {(M) }}\) & (3) \(^{\mathrm{x}}\) (0) & \(\left(K^{Y}{ }^{Y}(5)\right.\) & \(z\) & (L) \({ }_{\text {( }}^{\text {F }}\) (H) \\
\hline & & & & & \\
\hline
\end{tabular}

Incremental
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (1) \({ }_{(1)}\) & \[
(\omega)^{x}(\mathrm{D})
\] & \[
(\mathrm{K}){ }^{\mathrm{Y}}(\mathrm{~S})
\] & \(z\) & \[
(\mathrm{L})(\mathrm{F})(\mathrm{H})
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Informations to the Control concerning the Workpiece zero-point}

You can instruct the control with G90/ G91 how it should calculate the movements - in absolute or incrementai mode.

Absolute value programming
Where is the origin of the coordinates system situated?

The control unit of a CNC-machine can neither see nox think.
- it does not know the position of the workpiece mounted to the slide.
- It cannot read the technical drawing and thus cannot know the position of the workpiece zero-point chosen by you.

CNC-solution:

We have to instruct the control where we want the origin of coordinates.


\section*{Fixing the Origin of the Coordinates on the F1-CNC (Workpiece zero-point)}


\section*{Possibility 1:}

Fixing with G90
```

If the computer receives a G90 instruc-
tion in the course of the program, it
considers the actual slides position
as zero-point.

```

In the left side mentioned situation you could not take any workpiece measures from the drawing. You would have to calculate.

This is only useful if you shift the origin of the coordinates system to the workpiece zerompoint.

\section*{Example:}

You move the cutter to the zero-point chosen by you. If the cutter is in this position you program G90. The origin of the coordinates is set.

\title{
Fixing the Zero-point of Coordinates with G92
}

\section*{G92 - Programmed offset of reference point}
- We have set the workpiece zero-point.
- The cutter position is known to you (distance workpiece zero-point to cutter).

Information to computer with G92
You describe the cutter position looked at from the workpiece zerompoint. In this way you fix the workpiece zeropoint selected by you.




\section*{Attention:}
- G92 is an information, no instruction to traverse.
-- G92 means automatically absolute value programming.
- The zero-point of the workpiece can be set off with G92 within a program as ofter as wanted.

\section*{Exercises}


\section*{Exercises}

\section*{Program the workplece zero-point}

Progxam the indicated exaverse paths.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & (M) & (4) \({ }^{\times}\)(0) & (k) \({ }^{\text {Y }}\) (s) & \(z\) &  & Be \\
\hline & & & & & & - \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Exercises}

\author{
Program the workpiece zero-point
}

Program the incicated traverse paths.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (n) \({ }^{x}(0)\) & \((\mathrm{k})^{Y}(\mathrm{~S})\) & z & \(\underset{\text { (1) }}{\text { (T) }}\) ( H ( \({ }^{\text {a }}\) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercises}

\section*{Program the workpiece zerompoint}

Progran the indicated traverse paths.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \({ }^{N}\) & (M) & (0) \({ }^{\mathrm{x}}\) (D) & (K) \({ }^{\text {Y }}\) (S) & \(z\) & \(\stackrel{\text { LL) }}{\text { F }}\) ( \((\) H) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Various Workpiece Zero-Points in one Program}

\(W_{1}: G 92 / x-2100 / y=0 / \geq 1700\)
\(W_{2}: G 92 / x-8700 / y-2600 / \geq 3500\)

\section*{Example:}

By a new programming of the workpiece zero-point the previous workpiece zeropoint is cancelled.
- W1 is programmed. Plane 1 is worked on.
- Traverse cutter to starting position.

Sometimes it is easier for the programming to set various workpiece zerom points within one program.
-W2 is programmed. Plane 2 is worked on.

\section*{Note:}

In mose cases it is best to program the refexence point offset from one and the same point so that the program stays distinct.

\section*{Exercises}

Program the zexo-points and the paths indicated.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & \(\underset{\text { (M) }}{\text { ( }}\) & \[
(\mathrm{J})^{x}(\mathrm{D})
\] & \[
\left(K^{\prime}\right)^{\gamma}(\mathrm{S})
\] & 2 & \[
\left(\begin{array}{c}
\mathrm{F} \\
(\mathrm{~L})(\mathrm{T})(\mathrm{H})
\end{array}\right.
\] & B \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Mixed Programming}

You may change also within one and the same program the programming mode from absolute to incremental and vice-versa.


\title{
Programming of the originally fixed workpiece zero-point
}


\footnotetext{
If you want to fix the originally prow grammed workpiece zero-point you have to either
- move the tool into the original workpiece zero-point and then program G90
or
- describe from the original workpiece zerompoint the actual cutter position.
}


\section*{Connection:}

\section*{G92 - Zero-point offset \\ M06 - Tool lengths compensation}


The Hz information is an incremental target information within an independent coordinates system.

\section*{G92}

With G92 You fix the oxigin of the com ordinates system.


\section*{Manufacture}

\section*{1. Mounting the workpiece}

We assume that you have to manufacture a few workpieces of same shape. You mount the workpiece such that it is always in the same position on the machine table.
- The machine vice is clamped.
- In y-direction the workpiece remains always in same position because of the umovable jaw
- In X-direction by a stop,
- In z-direction by identical spacers.
2. You scratch the three reference surfaces and move the tool to the program start point ( \(=\) program end point, \(=\) tool change point)


\section*{Some tips for procedure}

1. Detemmining the workplece zero-point in the drawing:

You can see in your workpiece drawing what the best position for the workpiece zero-point will be. You determine the workpiece zero-point in your arawing.

2. Determining the starting point of the program.

3. Measuring of tools - Putting in data into a data sheet if more tools are used.

\title{
The Miscellaneous or Switching Functions M-Functions
}

Switching operations are programable too on CNC-machines. The M-adaress is used to program them. The word for the miscellaneous functions contains a 2 -digit key number.

Extract from codes for miscellaneous Eunctions (DIN 66025, part 2)
\begin{tabular}{|c|c|c|c|}
\hline Miscell aneous Function & Meaning & Miscell aneous Function & Mearing \\
\hline & & M10 & Clamp \\
\hline MOO & Programmed stop & M11 & Unclamp \\
\hline MO1 & optional (planted) stop & M19 & Oriented spindle stop \\
\hline MO2 & End of program & & \\
\hline MOS & Spindle clockwise & M30 & End of program \\
\hline MO4 & Spindle counterclockwise & M31 & Interlock bypass \\
\hline M05 & Spindle oft & M48 & \\
\hline M06 & Tool change & M49 & \\
\hline M07 & Coolant no. 2 ON & M58 & Constant speed on \\
\hline M08 & Coolant no. 1 on & M59 & Constant speed off \\
\hline M09 & Coolant off & M60 & Workpiece change \\
\hline
\end{tabular}

All key numbers not mentioned are temporarily ox permanenty available. The manufacturer of the control can assign the key numbers to a giver function.

\section*{Miscellaneous or Switching Functions on the F1-CNC}
\begin{tabular}{|c|c|c|c}
\hline\(N\) & \(G\) & \(X(J, D)\) & \(Y(K, S)\) \\
\hline & & & \\
\hline & \(M O\) & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}


\section*{M-Functions in standard version on F1-CNC}
```

MOO - Programmed stop
M30 - Program end with re-set
M06 - Tool lengths compensation
Tool data
Tool change

```
M17 - Jump back instruction
M99 - Circle parameter

\section*{Programming}

The M key numbers are entered into the G-column.

So if there is a M-key number to be entered always add the lettex \(M\).

\section*{Input of M-values}

Press \(M-k e y\) then put in number value.

M-Functions with the DNC-Interface (accessory)
```

MO3 - Spindle clockwise
MO5 - Spindle counterclockwise

```
\(\left.\begin{array}{l}\text { M08 } \\
\text { M09 } \\
\text { M20 } \\
\text { M29 } \\
\text { M22 } \\
\text { M23 }\end{array}\right] \quad\)\begin{tabular}{l} 
Freely available M-func- \\
tions
\end{tabular}

\section*{Description of Block Formats}
```

Depending on the G-functions you have to
program different addresses (enter values
for N,X,X,Z,F,M,T,D,S,L,N,K into the columns).
For a better overview the single prescrip-
tions are abbreviated.

```
1. You need a block number N
This block number can be 3-digit.
Abbreviation: N3
2. The G-address
The G-address has two decades; it deter-
mines which addresses have to be pro-
grammed.
3. X,Y,Z-addresses
\(X, Y, Z\) addresses may have \(\pm\) signs.
Vertical milling machine:
\(x \pm 5, y \pm 4, z \pm 5\)
Horizontal milling machine
\(X^{ \pm}=4 \pm 5, Z^{ \pm} 4.1\)
4. F-address (feed)
    3 digits, therefore T3
5. J.K-adaresses (circle parameter)
    2 digits, therefore \(\mathrm{J} 2, \mathrm{~K} 2\)
6. M-address (auxiliaxy function)
    2 digite, therefore M2
    7. T-address (tool number)
    3 digits, therefore T3
    8. D-address (cutter radius)
    5 digits, therefore DS
    9. S-address (speed)
    4 digits, therefore S4
10. L-address (jump)
    3 digits, therefore L3

\section*{Example of a format description:}

Format G00
N3/GOOIX \(\pm-5 / Y \pm 4 / Z \pm .5\)
11. H-address (with M26)

3 digits, therefore H3

\section*{Types of Controls of CNC-Machine Tools}


\section*{1. Point-to-Point Control}
- The tool can move onyl from point to point.
- The speed of the tool movement is not registered.
- The tool path from point to point is not prescribed. Only the final position has to be correct.

Application:
Drilling machines, spot welaing machines Today rather seldom in use, because most controis offer straight line or contouring charactexistics at the same price.

\section*{2. Straight Line Control}



\section*{3. Contouring Control}

Various axes traverse simultaneously with a programmed feed speed on a prescribed path. The movement can be a straight line or circular movement. Nearly all CNC-machine tools are today equipped with a contouring control.

\section*{Types of Contouring Controls}


\section*{a) Two-Axes Contouring Control}
(2D control; 2D means two-dimensional)

Application:
Lathes, simple milling machines, erosion machines, drawing machines, punch presses, etc.)

\footnotetext{
2
}

\section*{b) Two and a half Axes contouring Control}


\section*{c) Three-Axes Contouring Control}
(30 control)

All three axes can traverse simultaneously on a prescribed path with prom grammed feed speed.

Application:
Milling machines for the production of complex three-cimensional workpieces. If you traverse in three axes simultaneousiy you need special militing cutters (round head cuttexs etc.).


\section*{Note:}

There axe misunderstandings caused by commonly used technical terms. A miling machine features 3 directions of movements:
- Longitudinal slide movement
- cross slide movement
- vertical movement (up and down)

This is called a 3 maxes machine. However, this does not imply that the machine is equipped with a 3D contouring control (3-axes contouring control).

\section*{Programming - Geometry}
- The center point path of the cutter - influence of the cutter radius
- Trigonometry of the right triangle
- CNC conformal lettering, calculation of missing coordinates
- Transitions straight line - circular arc tangent
- Calculations of auxiliary points Straight line Circular are tangent


\section*{Description of the cutter path}

We describe the center point path of the cutter (except G72, G45-G48)

\section*{Influence of the cutter radius:}

When milling contours the cutter diameter determines the programing of the cutter path.

\section*{Auxiliary points:}

When programming the center points of the cutter path the target points are called auxiliary points.



When manufacturing axismparallel contours the cutter radius has to be added to or subtracted from the contour.

With non-axis parallel contours, auxiliary points have to be calculated. For this the trigonometric functions of the right triangle will do.

In quite some cases the coordinates of crossing points have to be calculated because they are not indicated in common technical drawings.
Missing coordinates are calculated on the basis of trigonometric functions.

\section*{Survey \\ Trigonometric functions in the right triangle}


Specification:
The right angle (90 ) is characterized with the symbol 10 .

Both angles \(\alpha\) (Alpha) and \(\beta\) (Beta) a) are in sum \(90^{\circ}\).
\(\alpha+\beta=90^{\circ}\)


Hypotenuse:
Opposite side of right angle.
Abbreviation: HY

Adjacent side (AS), opposite side (OS):
Each angle \(\alpha\) and \(\beta\) has a adjacent side and a opposite side.

Adjacent side \(=\) adjacent side to angle \(\infty\) ox \(\beta\)

Opposite side \(=\) opposite side to angle \(\alpha\) or \(\beta\)
\begin{tabular}{|c|c|c|}
\hline  & \(\sin \alpha=\frac{a}{c}\) & \[
\begin{aligned}
& a=c \cdot \sin \alpha \\
& c=\frac{a}{\sin \alpha}
\end{aligned}
\] \\
\hline \[
\text { Cosine }=\frac{\mathrm{AK}}{\mathrm{Hy}}
\] & \(\cos \alpha=\frac{b}{c}\) & \[
\begin{aligned}
& \mathrm{b}=\mathrm{c} \cdot \cos \alpha \\
& \mathrm{c}=\frac{\mathrm{b}}{\cos \alpha}
\end{aligned}
\] \\
\hline Tangent \(=\frac{G K}{A K}\) & \(\tan \alpha=\frac{a}{b}\) & \[
\begin{aligned}
& a=b \cdot \tan \alpha \\
& b=\frac{a}{\tan \alpha}
\end{aligned}
\] \\
\hline \[
\frac{\alpha}{c} \text { Cotangent }=\frac{A K}{G K}
\] & \(\cot \alpha=\frac{b}{a}\) & \[
\begin{aligned}
& b=a \cdot \cot \alpha \\
& a=\frac{b}{\cot \alpha}
\end{aligned}
\] \\
\hline
\end{tabular}

\title{
CNC-Conformal Lettering The Calculation of Coordinates
}

\author{
In many cases the lettering of technical drawings is such that the coordinates for the CNC-programing have to be calculated.
}

Non CNC-conformal lettering


\section*{CNC-conformal lettering}


Missing coordinates data can mostly be calculated using simple trigonometric functions.

\section*{Calculation of Coordinates}

\[
\begin{aligned}
& \text { Transitions: Axis-parallel straight } \\
& \text { line - straight line at angle } \\
& \text { The } \mathrm{Y} \text {-coordinate of point } \mathrm{P}_{3} \text { is not } \\
& \text { known. } \\
& \operatorname{tg} \alpha=\frac{x\left(\overline{P_{2} P_{3}}\right)}{20} \\
& Y\left(\overline{P_{2} P_{3}}\right)=\operatorname{tg} \alpha \cdot X\left(\overline{P_{2} P_{3}}\right) ; \alpha=30^{\circ} \\
& =\operatorname{tg} 30^{\circ} .20=11,54 \mathrm{~mm}
\end{aligned}
\]


\section*{Exercise:}

Calculate the missing coordinate of point \(P_{3}\).

Make a CNC-conformal drawing.

\section*{Transition straight line - tangential arc}


Coordinates of points \(\mathrm{P}_{2}, \mathrm{P}_{3}\) are not known.

1. Calculate the X-coordinate of S (crossing point between straight line and slant plane)
\(\operatorname{tg} x=\frac{x}{30}\)
\(x=\operatorname{tg} 30.30=17.32\)

2. Calculate the \(X\)-coordinate of \(\mathrm{P}_{2}\).

3. Calculate the \(X\) - and \(Y\)-coordinate of point \(\mathrm{P}_{3}\).
\[
\begin{aligned}
& \overline{S P}_{3}=14.55 \mathrm{~mm} \\
& \sin \alpha=\frac{X}{11.55} \\
& x=\sin 30^{\circ} .11 .55=5.78 \mathrm{~mm} \\
& \cos \alpha=\frac{Y}{11.55}
\end{aligned}
\]
\[
Y=\cos 30^{\circ} .11 .55=10 \mathrm{~mm}
\]

Letter all points in absolute and incremental mode


\section*{Calculation of auxiliary points}

\section*{Example 1}

You program the path of the milling axis QO/Q1/Q2/Q3 \(\ldots\) Points \(Q_{1}\) and \(Q_{2}\) have to be calculated.

Cuttex dia. 10 mm

1. Calculate the \(Y\)-coordinate of point \(\mathrm{P}_{2}\).

\[
\begin{aligned}
& \operatorname{tg} 30^{\circ}=\frac{Y P_{2}}{30} \\
& Y P_{2}=30.6930^{\circ}=17.32 \mathrm{~mm}
\end{aligned}
\]

2. The path from \(Q_{0}\) to \(Q_{1}\) is composed of:
\[
\mathrm{f}+20 \mathrm{~mm}+\Delta \mathrm{X}_{1}
\]
\(\operatorname{tg} \frac{\alpha_{1}}{2}=\frac{\Delta x_{1}}{r}\)
\(\Delta X_{1}=\operatorname{tg} \cdot \frac{\alpha}{2} \cdot r=\)
\(=\operatorname{tg} 15.5\)
\(\pm 1,34 \mathrm{~mm}\)
\(\mathrm{Q} 0 \mathrm{Q}=26,34 \mathrm{~mm}\)

Coordinates: \(Q_{0}=\) Workpiece zero-point
\begin{tabular}{|c|c|c|}
\hline Qo & \(X\) & \(Y\) \\
\hline\(Q_{0}\) & 0 & 0 \\
\(Q_{7}\) & 26,34 & 0 \\
\(Q_{2}\) & 60 & \\
\hline
\end{tabular}

\section*{Example 1 (continued)}

3. Calculation of \(\mathrm{Y}_{\mathrm{Q} 2}\)
\(Y Q_{2}=17,32-\Delta Y_{2}\)
\(\operatorname{tg} \frac{\mathcal{L}_{2}}{2}=\frac{\Delta Y_{2}}{r}\)

\[
\begin{aligned}
\Delta Y_{2} & =r \cdot t g \frac{\alpha_{z}}{2}=5 . \operatorname{tg} 30 \\
& =2,87 \mathrm{~mm}
\end{aligned}
\]
\[
Y o z=17.32-2,87
\]
\[
=14.45 \mathrm{~mm}
\]

Dimension the auxiliary points in absolute and incremental mode. Fix the workpiece zero-point by yourself.


\section*{Exercise 1 (Calculation of auxiliary Points)}

\author{
Calcuiate the \(\Delta X\) and \(\Delta Y\) values.
}


\section*{Exercise 1 (continued)}


\section*{Exercise 1 (continued)}


\section*{Exercise 2}

- Calculate the coordinate of point \(\mathrm{P}_{3}\).
- Calculate the missing auxiliary coordinates.

Cutter radius 10 mm

-- Pay attention; angle \(\alpha z\) is given as interior angle (enclosed angle).


Exercise 3


Program the exeroise in absolute or ircremental mode.

Fix the workpiece zerompoint and the cuttex radius yourself.


\section*{Example 2}

\section*{Approach at angle}
(A big safety distance was selected intentionally!)

\(\alpha_{1}=30^{\circ} / \alpha_{2}=60^{\circ}\)
\(S_{1}=\) Safety distance ( 10 mm )
\(r=\) Cutter radius ( 5 mm )
Calculation of point \(Q_{1}\)
1. \(X_{1:}\)
\(\operatorname{tg} \mathcal{L}_{1}=\frac{S}{X_{1}}\)

\(X_{1}=\frac{S}{\operatorname{tg} 64}=\frac{10}{\operatorname{tg} 30^{\circ}}=17,32 \mathrm{~mm}\)
2. \(\Delta X_{1:}\)
\(\operatorname{tg} \frac{\Delta}{2}=\frac{\Delta X_{1}}{r}\)
\(\Delta X_{1}=\operatorname{tg} \frac{\alpha}{2} \cdot \mathrm{r}=\operatorname{tg} 15^{\circ} .5=\)
\(=1,34 \mathrm{~mm}\)
3. Distance \(Y\left(P_{1} Q_{1}\right)=S+r=15 \mathrm{~mm}\)

\section*{Example 2 (continued)}

\section*{Calculation of point \(Q_{2}\)}


Describe the coordinates from points \(Q_{1}, Q_{2}\) in connection with \(P_{1}, P_{2}\).

\section*{Auxiliary Points with acute Angles}


\author{
With acute angles you have to traverse long no-load paths from target point A to start point \(B\). \\ That takes time. It may happen that the slide movements are too short or there is a collision with a chucking device or you mill into a workpiece part.
}

\section*{Two "short cuts" are common in milling techniques}

Traverse with various straight
innes.

\[
\begin{aligned}
& \sin \alpha_{2}=\frac{\Delta X_{2}}{r} \\
& \cos \alpha_{2}=\frac{\Delta y_{2}}{r} \\
& \Delta X_{2}=\sin \alpha_{2} \\
& \Delta Y_{2}=\cos \alpha_{2}=r
\end{aligned}
\]


\section*{Traverse in circular arc}

\section*{Exercise:}

Dimension auxiliary points absolute
an incrementas. \(\lambda t\)
Program absolute and incremental.
select workpiece zero-point. ind


\section*{Straight line movement}


Traverse with various straight lines
Exercise:
- Dimension absolute and incremental.
- Program the paths.



\section*{Chapter 5}

\section*{Programming}

The contents are arranged according to the numbering of the G-functions

\author{
G90/G91/G92 \\ G65/G66 \\ Compare chapter 4 \\ Compare tape operation RS-232 C operation \\ Chapter 10
}

\title{
Hints for the Beginner
}
- Program start point

Program target point
Tool change point
- Potting the cutter path

\title{
The Start Point of the Program The Tool Change Point The End Point of the Program
}


Just imagine the sequence of operation: the workpiece has to be mounted and dismounted; tools will have to be changed.

The start point of the program should be chosen so that all handiing can be done without any obstacle.

The start point of the program for the tool shall always be the end point of the program.
```

The tool change point shall be the start
point of program for reason of simpli-
city.

```

\section*{Determination of Coordinates}

Scratch or touch the refexence surfaces slightly and move the tool by hand to the selected starting point.

\section*{Start Point for Chip Removal}

Position the tool in a safety distance to the workpiece. So you can find out during a program run whether the tool runs into the workpiece because of a programming fault (with rapid traverse).

\title{
Auxiliary Drawings for Programming
}

\author{
As with the programming of turned pieces also with the programing of milled pieces the technical drawing is a valuable heip. This is particularly true in the beginning. It is easier to set up and check the program.
}


\section*{Turned pieces:}

You draw and program the path of the edge tip of the tool bit. The edge tip is the part of the tool bit which produces the contour.

The tool bit movement is in one plane, thus it is easier to depict.


\section*{Milled pieces:}

Here you have to think and to draw in three dimensions. This needs quite some experience.

A three-dimensional depiction is very distinct but not easy to do. Besides that, all paths which are not parallel to axis show shortened.

A separate drawing is a great help for the first exercises.

\section*{An example:}

1. Enter into a sketch the program start point of the cutter.

2. If you firstly move in z-direction to the milling plane you can draw in the workpiece and the cutter path.

2.1. Mark the raw stock contour and the finished part contour.

2.2. Draw in the cutter paths. Mark the various auxiliary points.

Draw in the direction of movement.

2.3. Number the various blocks. The checking of the program will be much easier.
3. Blocks with no traverse movements programmed can be assigned to the auxiliary points.

4. With absolute programming draw in zero-point of workpiece.

\section*{G00 - Rapid Traverse}

\section*{Straight line approach movement}


\section*{Incremental programming}

\(600 x+0 \quad y=0 \quad z=-3000\)

Absolute programming
\(600 / x-2004 / y=0 / z-500\)

The target point is described from the starting point of the cutter.

The target point is described from the previously fixed zerompoint of the coordinates syster.

\section*{G00 - Rapid Traverse}

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G})}
\] & \[
(\mathrm{J}){ }^{\mathrm{x}}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & 2 & \[
\underset{(\mathrm{L})(\mathrm{T})(\mathrm{H})}{\mathrm{F}}
\] \\
\hline 00 & 00 & 3000 & 0 & 0 & \\
\hline 01 & 00 & 0 & 0 & \(-2000\) & \\
\hline 02 & 00 & 0 & 2500 & 0 & \\
\hline 03 & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
- All movements are carried out witn the highest possible speed, i.e. rapid traverse with the F1-CNC: \(600 \mathrm{~mm} / \mathrm{m}(\mathrm{n})\).
- GOO is no chip removal movement but a movement without miling cuttex being in action.

- No programming of feed (F) because the slide moves with rapid traverse when \(G O O\) is programmed.


\section*{Programming Exercises}

In order to move the milling cutter to its working position you have various possibilities.

\section*{1. Traverse only in 1 axis}

The two othex axes are zero. - You have six possibilities. Program all of them, absolute and incremental.

\section*{a) Incremental Value Programming:}
- 'ihe milling cutter is in the position which is indicated in the drawing.
- It is moved to milling position with GOO.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\begin{gathered}
\mathrm{G} \\
(\mathrm{M})
\end{gathered}
\] & \[
(\mathrm{J}){ }_{(\mathrm{D})}
\] & \[
(\kappa)^{Y}(S)
\] & \(z\) & \[
\underset{(N)}{(n)}
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{b) Absolute Value Programming:}
- Miling cutter is moved to milling position.
- Frogxam the traverse paths

\begin{tabular}{|l|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{X})^{(\mathrm{O})}\)
\end{tabular} & \({ }_{(K)}{ }^{Y}(\mathrm{~S})\) & z & \((\mathrm{L})(\mathrm{T})(\mathrm{H})\) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{2. Traverse in one block simultaneously in 2 axes}
```

Program absolute and incremental. - The
zero-point of the coordinate system for
the absolute programming is in point Po.

```

Draw in the possibilities.


\title{
G01 - Straight Line Interpolation
}

\author{
Straight line cutting movement, feed pxogramming necessary.
}


Incremental programming


G01/X2500/Y1800/Z \(=O / F=\).

The target point is described from the starting point of the cutter.

Absolute programming


G01/X4000/Y3200/Z -500/F...

The target point is described from the previously fixed zero-point of the coordinates system.

\section*{G01 - Linear Interpolation}

Linear meana straight lined. Interpolation means the finding of intermediate values.
- GO1 is a chip removal movenent.
- With each chip removal movement you have to program a Eeed.


Whth Gol you can traverse parallel to axis and at each angle in one plane.



\section*{Examples G01 (1) Milling of a Shoulder}
- Milling cutter dia. 10 mm
- Mode of programming: incremental
- A shoulder with a widtr of 5 mm and a depth of 4 mo has to be milled.

1. Determining the starting point as indicated.

2. Programming with GOO to the starting point of chip removal. Choose a safety distance of 5 mm .


Example (1) (continued)

\section*{Determination of the Path for the Milling Cutter}

With a diameter of the milling cutter of 10 mm and a width of the shoulder of 5 mm , the axis of the cutter is exactly at the edge of the workpiece.

\section*{Programming:}

Program ena position is starting position.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(\mathrm{v})^{\mathrm{x}}(\mathrm{D})
\] & \[
(K){ }^{Y}(S)
\] & \(z\) & \[
(\mathrm{L}) \stackrel{\mathrm{F}}{\mathrm{G}}(\mathrm{H})
\] \\
\hline 00 & 00 & 2000 & 0 & 0 & \\
\hline 01 & 00 & 0 & 0 & \(-3400\) & \\
\hline 02 & 01 & 6000 & 0 & 0 & 200 \\
\hline 03 & 01 & 0 & 5000 & 0 & 200 \\
\hline 04 & 01 & \(-5000\) & 0 & 0 & 200 \\
\hline 05 & 01 & 0 & -5000 & 0 & 200 \\
\hline 06 & 00 & -3000 & 0 & 0 & \\
\hline 07 & 00 & 0 & 0 & 3400 & \\
\hline 08 & M30 & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercise 2 for Example 1}
- Program this example in absolute values.
- Carry out a zero-point offset with G92.
- Starting position and zerompoint of workpiece as in drawing.

\section*{G01 - Example 2}

Milling a Groove
- Mode of programing: incremental
- Dia. of milling cutter: 10 mm
- Starting position as in drawing
- Depth of groove: 4 mm
- Feed (compare technological data)
- Safety distance before cutting: 5 mm


Pay attention:
When feeding in the cutter, halve the feed values.


\section*{Exercise 1 for Example 2}

Write the progran according to the travexse paths as indioated.

\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{c}
\(X\) \\
\((J)\) \\
\((D)\)
\end{tabular} & \({ }_{(K)}{ }^{Y}(\mathrm{~S})\) & \(Z\) & \begin{tabular}{c}
\(F\) \\
\((L)(M)(M)\)
\end{tabular} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercise 2 for Example 2}

Program the example absolute with zeropoint offset.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\begin{gathered}
G \\
(M)
\end{gathered}
\] & \[
(J)^{x}(D)
\] & \[
(\mathrm{K}){ }^{Y}(\mathrm{~S})
\] & \(z\) & \[
\int \frac{F}{(L)(T)(H)}
\] \\
\hline & \(\checkmark\) & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercise 3 for Example 2}

Choose other traverse paths for GOO.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\stackrel{\mathrm{G}}{(\mathrm{M})}
\] & \[
(\mathrm{J})^{\mathrm{X}}(\mathrm{D})
\] & \[
(K)^{Y}(S)
\] & Z & \[
\stackrel{F}{(\mathrm{~L})(\mathrm{T})(\mathrm{H})}
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{G01 - Example 3 \\ Milling a Pocket}

= Milling cutter dia. 10 mm
- Starting position as in drawing
- Safety distance before cutting 5 mm


Choose the path of the milling cutter such that there is always an overlap of \(1-2 \mathrm{mp}\) (in industry approx. \(1 / 10\) of the dia. of the cutter is chosen).

\section*{Drawing the Path of the Milling Cutter}

\section*{Dimensioning}

An impoxtant support for your programming work is an appropriate drawing:
- Enter the block number
- Mark begin and end of the block
- Use the largest possible scale when drawing.
- Dimension auxiliary measurements

Program this groove as in the drawing in absolute and incxemental mode.

Programming sketch and dimensioning of auxiliary measurements for absolute programming.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & (M) & (J) \({ }^{*}\) (0) & \((\mathrm{K})^{Y}(\mathrm{~S})\) & \(z\) & \(\stackrel{\mathrm{F}}{(\mathrm{F})(\mathrm{O}(\mathrm{H})}\) & remarks \\
\hline & & & & & & , \\
\hline & & & & & & \\
\hline & & & \(\square\) & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Drawing the Path of the Milling Cutter} Dimensioning

Programming sketch and dimensioning of auxiliary measurements for incremental programming.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & (M) & \((J)^{\mathrm{x}}\) (D) & \((\mathrm{N})^{Y}(\mathrm{~S})\) & z & \(\stackrel{\text { (L) }}{\text { F ( }}\) (H) & remarks \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Example 4}


The milling path in example 3 would leave the corners in the pocket unfinished.


With pocket milling you cut a rough
pocket first. With a final cut you
mill the complete contour once again
to reach a better surface quality.

\section*{Exercise:}
- Program and mill the given pocket.
- As final run a continuous smooth cut of 2 mm shall be taken off. Mode of progranming as you wish.
- Select the zero point of the workpiece yourself.

Example 5/G01

\section*{Miling a Cross Slot of \(45^{\circ}\)}


Diameter of milling cutter 8 mm .
Program the zero point of the workpiece using absotute value programing.

Make a drawing and use reference dimensions!

1. Start position: Milling

5 mm away from theoretical X -edge
5 mm away from theoretical \(Y\)-edge
2. Target position:

As indicated ( \(X 5 \mathrm{~mm}, ~ Z 5 \mathrm{~mm}\) )


\section*{Example 6: Bores \(\mathbf{4 \times 9 0 ^ { \circ }}\)}

+ The center point coos= dinates of the bolt circle are known.
+ The coordinates of the bores have to be calculated.
\[
\begin{aligned}
& \sin \alpha=\frac{Y_{1}}{R} \\
& Y_{1}=R \cdot \operatorname{lin} 45^{\circ}=15.0,707=10,6
\end{aligned}
\]
\[
\cos =\frac{X_{1}}{R}
\]
\[
X_{t}=\text { R. } \cos 45^{\circ}=15 \cdot 0,707=10,6
\]

Since the bores are positioned symmetrically to the center point, you can calculate the \(X, Y\) coordinates of the other bores (by adding or subtracting).

Dimension the drawing for CNC-manufacture - in absolute and incremental mode.

Program the example.
\(\%\)



Bolt circle \(6 \times 60^{\circ}\)

- Calculate the coordinates of the bores.
- Dimension the part for CNC programming.
- Program example.

Incremental programming
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G})}
\] & \[
(\omega)^{X}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & \(z\) & \(\underset{(\mathrm{C})}{\mathrm{T})(\mathrm{T})}\) \\
\hline & & & 3 & & \\
\hline & & & - & & \\
\hline & & & & & . \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Example 7: \\ Absolute programming and lettering}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \({ }^{N}\) & (M) & (3) \({ }^{\mathrm{x}}\) (口) & (K) \({ }^{Y}\) (S) & \(z\) & \({ }_{\text {(L) }} \stackrel{F}{7}(1)^{(1)}\) & a \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Example 8: Hexagon}

Use cutter dia. 16 mm

1. You calculated the coordinates of the corner points in one of the previous examples.

Transfer the values for points 1 to 6 .
2. You have to calculate the auxiliary coordinates of the cutter center path.



\section*{Example 8:}

\section*{Hexagon}

You have to add respectively substract the \(\Delta X\) and radius values to the coordinate values of points \(1,2,3,4,5,6\). Calculation of \(\Delta X\)
\(\operatorname{tg} \frac{\alpha}{2}=\frac{r}{\Delta X}\)
\(\Delta X=\frac{r}{\operatorname{tg} \frac{\alpha}{2}}\)


Put in measurements for auxiliary points. program the example!

Pay attention whether there is remain ing material at the outer corners. If yes, mill it off.

\section*{The Milling of Circular Arcs}


On conventional machine tools circular
arcs can be produced only using special auxiliary devices. On CNC-machines circular arcs of any angle or radius can be reached without such special devices. The key information for circular arcs is GO2 and GO3.

\title{
G02 - Circular Interpolation Clockwise G03 - Circular Interpolation Counterclockwise
}
```

In ordex to formulate what you mean by clock-
wise and counterclockwise, we have to deter-
mine the direction from which we look at.

```

\section*{Determination}

You have always to look at the sense of rota* tion in one plane from the positive direction of the third axis.

\(+2\)


\section*{YZ-Plane:}

\section*{Interpolation G02.}

\section*{Clockwise}

\section*{XZ-Plane:}


In this technical sketch the direction in the \(\mathrm{XZ}-\mathrm{plane}\) seems to be inverted.


\section*{Arcs on the F1-CNC Milling Machine}

\section*{Metric}
size of radii 0,01-99,99 mm
in steps of \(0,01 \mathrm{~mm}\)

\section*{Programming}

On the Fl -CNC you can progran quarter arcs (90 ) or arcs of circles in steps of \(1^{\circ}\).

\section*{Programming of arcs \(90^{\circ}\) on the F1-CNC}
1. The sense of rotation is described with GO2/GO3.
2. The end point of the quarter arc is determined by the \(X, Y, Z\) addresses either starting from point PA (incremental) or from the workpiece zeropoint (absolute).
3. The F-address is used to describe the feed.

\(\pm_{4}\) resp. \(\pm_{5}\) with \(\mathrm{X}, \mathrm{Y}-\mathrm{values}\) for verti-
cal resp. horizontal axis system.

\section*{Programming of Quarter Arcs in the} XY-Plane


G02 Incremental Programming


Example: radius 10 mm
Programed are \(X, Y\) values looked at from the starting point.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(N\) & \(G\) & \(X\) & \(Y\) & \(Z\) & \(F\) & \\
\hline & 02 & +1000 & -1000 & 0 & \(\cdots\) & Arc 1 \\
\hline & 02 & -1000 & -1000 & 0 & & Arc 2 \\
\hline & 02 & -1000 & +1000 & 0 & & Arc 3 \\
\hline & 02 & +1000 & +1000 & 0 & & Arc 4 \\
\hline
\end{tabular}

\section*{Attention:}
\[
\begin{aligned}
& \text { In the } x \text { wolane the } Z \text {-value has to be } \\
& \text { programed with zero. }
\end{aligned}
\]

\section*{G02 - Absolute Programming}


Zero-point of workpiece as indicated in dxawing.

You program the XY-coordinates of the end point of quarter arc, looked at from the previousiy fixed point ( \(W\) ).


\section*{Note:}

Arcs can be moved only in one plane. Thus, the Z-value of the previous block has to be taken over.

Block NO1/NO2: Move to start position Block N7: Infeed in \(Z-100\) Block N8/N9: Arcs 1, 2 set deeper
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(N \cdot\) & \(G\) & \(X\) & \(Y\) & \(Z\) & \(F\) & \\
\hline 000 & 92 & 0 & 0 & 1000 & & \\
\hline 01 & 00 & 2000 & 2000 & 1000 & & \\
\hline 2 & 01 & 2000 & 2000 & 0 & \(\ldots\) & Position milling cutter at start G02 \\
\hline 3 & 02 & 3000 & 1000 & 0 & \(\ldots\) & \\
\hline 4 & 02 & 2000 & 0 & 0 & \(\ldots\) & \\
\hline 5 & 02 & 1000 & 1000 & 0 & \(\ldots\) & \\
\hline 6 & 02 & 2000 & 2000 & 0 &... & \\
\hline 7 & 01 & 2000 & 2000 & -100 & \(\ldots\). & Position milling cutter at staxt GO2 \\
\hline 8 & 02 & 3000 & 1000 & -100 & \(\ldots\), & \\
\hline 9 & 02 & 2000 & 0 & -100 &., & \\
\hline 10 & \(\vdots\) & \(\vdots\) & \(\vdots\) & & & \\
\hline
\end{tabular}

\section*{Exercises}


G03 - Incremental Programming
- Position of miling cutter at stare as indicated in drawing.
* Circle is in XY-plane \(Z=0\)
- Start the circie programming in point " 0 "。
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(J)^{x}(\mathrm{D})
\] & \[
\left(\mathrm{K}^{\mathrm{Y}}(\mathrm{~S})\right.
\] & 2 & \[
\mid(\mathrm{L})(\mathrm{T})(\mathrm{N})
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{G03 - Absolute Programming}
- Position of miliing cutter at start as indicated in arawing.
- Carry out offset of zero point.
-Circle is parallel in \(x y-p l a n e, ~ b u t\) at a distance \(Z+10 \mathrm{~mm}\).
- Start the circle programming in point "O".
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \begin{tabular}{c}
\(G\) \\
\((M)\)
\end{tabular} & \begin{tabular}{c}
\(X\) \\
\((N)\) \\
\((D)\)
\end{tabular} & \begin{tabular}{c}
\(Y\) \\
\((K)\) \\
\((S)\)
\end{tabular} & \(z\) & \begin{tabular}{c}
\(F\) \\
\((L)(N)\)
\end{tabular} \\
\hline & & & & & \\
\hline
\end{tabular}
*

\section*{Programming Exercise G02/G03}
- Mode of Programming: incremental
- Approach direction as in drawing
- Determine starting point yourself
- Determine drawing with dimensioning of triangulation (station).


Approach direction as in drawing.

\section*{Programming Exercise G02/G03}


\section*{Alternative 1}
- Mode of Programing: absolute
- Zero-point of workpiece as in drawing.
- Starting point of milling cutter as in drawing.
- Dia. of milling cutter 10 mm .


\section*{Alternative 2}
- Mode of programming: absolute
- Zero-point of workpiece as in drawing
- Starting point as in drawing.

\section*{Y-Z Plane}


\section*{Exercise}

Mode of programming: incremental
- Circle in YZ-plane
- Start point as in drawing
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
\text { (J) } x^{x}(D)
\] & \[
{ }_{(\mathrm{K})}{ }^{\mathrm{Y}}(\mathrm{~S})
\] & \(z\) & \[
(\mathrm{L}) \underset{(\mathrm{T})}{\mathrm{F}}(\mathrm{H})
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercise}


\section*{Mode of programming: absolute}
- Zero-point as in drawing
- Start point and end point for programming is workpiece zero-point.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & ( \(\begin{gathered}\text { G } \\ \text { (M) }\end{gathered}\) & \[
()^{x}{ }_{(0)}
\] & \[
(\mathrm{K}){ }^{Y}(\mathrm{~S})
\] & \(z\) & \[
\underset{(\mathrm{L})(\mathrm{T})(\mathrm{H})}{ }
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Circles X-Z Plane}


\section*{Exercise}
- Mode of programming incremental
- Starting point as in drawing
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(N\) & \[
\begin{gathered}
\mathrm{G} \\
(\mathrm{M})
\end{gathered}
\] & \[
(1){ }^{\mathrm{x}}\langle\mathrm{D})
\] & \[
\left(\mathrm{K}^{\mathrm{Y}}(\mathrm{~S})\right.
\] & 2 & \[
\stackrel{F}{(\mathrm{~F}+\mathrm{B})(\mathrm{H})}
\] \\
\hline & & & & & \\
\hline & & & - & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Exercise}
* Mode of programming: absolute

- Zero-point as in drawing
- Starting point and end point for programming is the zero-point.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & \[
(J){ }^{x}(D)
\] & \[
(K)^{Y}(S)
\] & \(z\) &  \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Some Terms for Circular Interpolation G02/03}


\section*{Complete circle programming}

A circle up to \(360^{\circ}\) can be programed in one block.


\section*{Quadrants programming}
\[
\begin{aligned}
& \text { A circle is divided into } 4 \text { quadrants. } \\
& \text { In one block only one axe of max. } \\
& 90 \text { can be programed. The arc of } \\
& \text { circle has to be within a given qua- } \\
& \text { drant. }
\end{aligned}
\]

In this case two blocks are necessary because the arc reaches over 2 quadrants.
```

E1-CNC

- Quadrants programming
- To program a part of an arc within a
quadrant, a code in two blocks is
used.

```

\section*{Arcs with Angles at Random}
```

On the F1-CNC arcs in steps of 10
each can be programmed. The programming
is done in various subsequent blocks.

```


Blocks NiOO/ 101 are considered by the computer to be one unit. The computer asks whether there is a M99 instruction in the block following a GO2/GO3 instruction.

\section*{Next block \\ N101/M99/J = 0/K = 30}
\begin{tabular}{|c|}
\hline M99 is the key information for the arc \(\neq 90^{\circ}\). \\
\hline I-address: for the grades statemen \\
\hline of the start of the arc within the quadrant. \\
\hline -adaress: target address of the \\
\hline nt in gra \\
\hline
\end{tabular}
M99 is the key information for the
are \(\neq 90^{\circ}\).
statement in grades.

\section*{Mode of programming: incremental}
(The following examples are in the \(X \mathrm{f}\) plane; for all other planes this principle is valid too).

Radius 10 mm

\section*{First block}

Here the \(90^{\circ}\) arc in which the partial arc circle is situated will be determined.

N100/G02/X1000/Y -1000/Z. . ./F. .
With GO2 the computer is given information on the sense of rotation.

With X 1000/y 1000 the computer knows the quadrant ( \({ }^{\text {sign }}\) of \(X, Y\) ) and the radius of the arc.

J-address: for the grades statement of the start of the arc within the quadrant.

K-adaress: target address of the arc. statement in grades.


\section*{Example Incremental value programming}

N100/GO2/X1000/\% - 1000/Z=0/F... N101/M99/J24/K67


\section*{Example \\ Incremental value programming}

Arc of circle reaching over a few qua= drants.

N100/GO2/X1000/Y \(1000 / Z=0 / \mathrm{F} .\).
N101/M99/J32/K90
Arc in quadrant \(I\).
N102/G02/X1000/Y -1000/Z=0/F...
Arc in quadrant \(I I\).
N103/GO2/X -1000/Y -1000/Z=0/F...
\(\mathrm{N} 104 / \mathrm{M} 99 / \mathrm{J}=\mathrm{O} / \mathrm{K} 28\)
AxC in quadrant III.

\section*{Using the Chart}

The chart shows you the J, K-values, the exact grades and the coordinates of points for a circle with radius 1.

In order to program the cutter path it is often necessary to calculate the coordinates of the arc starting (PA) and target point (PZ) . These points are missing in many drawings.
(All examples axe in the \(x, y\)-plane, the same principle is valid for all other planes too)


\section*{Example:}
\(X(a)\) and \(Y(b)\) coordinates of the target point ( PZ ) axe not known.

Calculation: a
\(a=R-1\)
\(\cos 46.01=\frac{1}{R}\)
\(\mathrm{L}=\mathrm{R} . \cos 46.01=6.9453\)
\(a=10-6.945=3.0567\)
Calculation: b
\(\sin 46.01=\frac{D}{R}\)
\(b=\) R.sin46.01 \(=7.194\)

These values can also be read from the chart.

\section*{Circular Interpolation - Parameter XYZ-Values at the Circle 1}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & a & b \\
\hline J,K & Grad & XYZ & XYZ \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 1.03 & 0 & 181 \\
\hline 2 & 1.98 & 8 & 347 \\
\hline 3 & 3. 92 & 14 & 525 \\
\hline 4 & 4.96 & 28 & 709 \\
\hline 5 & 5.10 & 42 & 889 \\
\hline E & 6.05 & 56 & 1056 \\
\hline 7 & 7.01 & 69 & 12ee \\
\hline 3 & 8.06 & 97 & 1493 \\
\hline 9 & 9.63 & 125 & 1589 \\
\hline 10 & 9.99 & 153 & 1736 \\
\hline 11 & 10.96 & 181 & 1903 \\
\hline 12 & 11.93 & 2es & 206s \\
\hline 13 & 12.93 & 250 & 2250 \\
\hline 14 & 14.05 & 29e & 2431 \\
\hline 15 & 15.03 & 333 & 2597 \\
\hline 16 & 16.02 & 375 & 3764 \\
\hline 17 & 17.02 & 431 & 2931 \\
\hline 18 & 18.03 & 485 & 3097 \\
\hline 19 & 19.03 & 542 & 3 364 \\
\hline 20 & 20.04 & 597 & 3431 \\
\hline 21 & 20.37 & 653 & 3583 \\
\hline E2 & 22.00 & 7ee & 3750 \\
\hline 23 & 23.04 & 79 c & 3917 \\
\hline 24 & 24.00 & 361 & 4063 \\
\hline 25 & 24.36 & 931 & 42e2 \\
\hline 26 & 25.92 & 1000 & 4375 \\
\hline E 7 & 25.99 & 1083 & 454E \\
\hline 23 & 27.98 & 1167 & 4694 \\
\hline 29 & 28.98 & 1 250 & 4847 \\
\hline 30 & 29.38 & 1333 & 5000 \\
\hline 31 & 30.37 & 1417 & 5153 \\
\hline 32 & 32.01 & 1514 & 5306 \\
\hline 33 & 33.05 & 1611 & 5458 \\
\hline 34 & 34.02 & 1708 & 5597 \\
\hline 35 & 34.99 & 1806 & 5736 \\
\hline 36 & 35.96 & 1903 & 5875 \\
\hline 37 & 36.93 & 2000 & 6014 \\
\hline 38 & 37.95 & 2111 & 6153 \\
\hline 39 & 38.97 & こeaz & bege \\
\hline 40 & 39.98 & 2333 & 6431 \\
\hline 41 & 41.00 & 2444 & 6569 \\
\hline 42 & 41.98 & 2556 & 6694 \\
\hline 43 & 42.97 & 2631 & 6319 \\
\hline 44 & 43.98 & esge & 6944 \\
\hline 45 & 45.06 & 2931 & 7069 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & a & b \\
\hline , J K & Grad & \(X Y Z\) & \(X Y Z\) \\
\hline 46 & 48.01 & 3056 & 7194 \\
\hline 47 & \(47.0{ }^{\text {4, }}\) & 3181 & 7319 \\
\hline 48 & 43.03 & 3305 & 7444 \\
\hline 49 & 48.93 & 3431 & 7558 \\
\hline 50 & 50.01 & 3563 & 7667 \\
\hline 51 & 51.00 & 3708 & 7778 \\
\hline 52 & 52.04 & 3847 & 7689 \\
\hline 53 & 53.05 & 3966 & 8000 \\
\hline 54 & 54.03 & 4125 & 8097 \\
\hline 55 & 55.00 & 4264 & 8194 \\
\hline 56 & 55.97 & 4403 & 8е92 \\
\hline 57 & 56.34 & 454z & 8359 \\
\hline 53 & 57.98 & 4694 & 8485 \\
\hline 59 & 59.05 & 4847 & 8583 \\
\hline E0 & 60.01 & 5000 & 8657 \\
\hline E1 & 61.01 & 5153 & 8759 \\
\hline Ee & 62.01 & 5308 & 3833 \\
\hline 63 & 63.00 & 5453 & 8917 \\
\hline E4 & 64.07 & 5625 & 9000 \\
\hline 65 & 65.63 & 5773 & 9669 \\
\hline 66 & 65.99 & 5931 & 91.39 \\
\hline 67 & 65.95 & 8083 & 9 eas \\
\hline 68 & 67.99 & E250 & 9278 \\
\hline 69 & 6s.02 & 6417 & 9347 \\
\hline 70 & 69.95 & 6569 & 9403 \\
\hline 71 & 70.96 & 6736 & 9453 \\
\hline 72 & 71.96 & 6993 & 9514 \\
\hline 73 & 72.97 & 7069 & 9569 \\
\hline 74 & 73.97 & 7236 & 9625 \\
\hline 75 & 74.96 & 7403 & 5667 \\
\hline 76 & 75.94 & 7569 & 9708 \\
\hline 77 & 77.00 & 7750 & 9750 \\
\hline 78 & 73.06 & 7931 & 9792 \\
\hline 79 & 79.63 & 8097 & 9819 \\
\hline 50 & 80.00 & 8ES4 & 9847 \\
\hline 81 & 80.96 & 9431 & 3875 \\
\hline ez & 31.93 & 8597 & 9303 \\
\hline 83 & 32. 98 & 8778 & 9931 \\
\hline 64 & 83.94 & 3844 & 9944 \\
\hline 85 & 94.89 & 9111 & 9958 \\
\hline ¢6 & 85.93 & gese & 9972 \\
\hline 87 & 86.37 & 947 C & 9986 \\
\hline 88 & 88.01 & 9653 & 10000 \\
\hline 89 & 88.96 & 9819 & 10000 \\
\hline 90 & 90.00 & 10000 & 10000 \\
\hline
\end{tabular}

In the charts the \(a, b\) values are indicated for the standard circle in 4 digits．
\begin{tabular}{|c|c|c|c|c|}
\hline 16 & 16.02 & 375 & 2754 & Example Radius 1 mm \\
\hline 17 & 17．02 & 431 & 2931 & \(25^{\circ}\left(24.96^{\circ}\right)\) \\
\hline 13 & 18.03 & 485 & 3097 & \\
\hline 19 & 19.03 & 542 & 3264 & a－value： 0.0931 mm \\
\hline 20 & 20．04 & 597 & 3431 & \[
\text { b-value: } 0,4222 \mathrm{~mm}
\] \\
\hline E1 & 20．37 & 653 & 358\％ & \\
\hline E己 & E2．00 & 7ee & 3756 & \\
\hline 23 & 23.04 & 792 & 3317 & \\
\hline 24 & 24．90 & 361 & 4059 & \\
\hline 25 & 24.96 & 331 & 4e2e & \\
\hline E6 & 25．92 & 1000 & 4375 & \\
\hline 27 & 26．99 & 1083 & 4542 & \\
\hline 29 & 27.98 & 1167 & 4694 & \\
\hline 29 & 28．98 & 1250 & 4847 & \\
\hline 30 & 39.38 & 1333 & 5000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 31 & 30．97 & 1417 & 5153 \\
\hline 3 c & 32．01 & 1514 & 5306 \\
\hline 33 & 3.3 .05 & 1611 & 5458 \\
\hline 34 & 34.05 & 1709 & 5597 \\
\hline \％5 & 34.99 & 1506 & 5736 \\
\hline 36 & 35.96 & 1903 & 5875 \\
\hline 37 & 36．93 & E0¢6 & 6014 \\
\hline 93 & 37．95 & 2111 & 6153 \\
\hline 3 l & 38.37 & evec & sege \\
\hline 40 & 39.98 & 2333 & 6431 \\
\hline 41 & 41.20 & 己我4．4 & E56\％ \\
\hline 42 & \(4 . .96\) & 255e & 6694 \\
\hline 43 & 4 A .37 & 2es 1 & 5319 \\
\hline 74 & 43.98 & espe & 6944 \\
\hline 45 & 45.08 & Es21 & 705 \\
\hline
\end{tabular}

\section*{Values（a，b）for any desired angle（random）}
```

Multiply a,b values with radius sizes
Example
\alpha=410
Radius 6,35 ma
a=0,244.4 x 6,35 = 1,55:94
L=0,6569 86,35=4,171315
The values must be programmed without
rounding off.
a -155
O}+4

```


The statement of angles is always programmed from the quadrant start.

Thus, the \(a, b\) values may have \(x, y\) and \(z\) characteristics.

\section*{Exercise:}

Put in the a, \(b\) values of quadrants IV and \(I\).


Radius 10 mm
\begin{tabular}{c|c|c|} 
& \(I V\) & \(I\) \\
\hline\(a\) & & \\
\hline\(b\) & & \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|} 
Radius 27 mm \\
\hline & IV & \(I\) \\
\hline\(a\) & & \\
\hline\(b\) & & \\
\hline
\end{tabular}

\section*{Exercise:}

Put in the coordinates for \(\mathrm{P}_{\mathrm{O}}, \mathrm{P}_{\mathrm{A}}\), \(P_{Z}\) and \(P_{E}\).

Radius 10 mm


Radiue 38 mm


\section*{Programming of Arcs \(\neq 90^{\circ}\) in absolute Mode}


For a better understanding some details on the \(\mathrm{F} 1-\mathrm{CNC}\) computer.
In the memory (RAM) the \(90^{\circ}\) ares (Quadrants) are stored -
with the block:
N. . \(/ \mathrm{GO} / \mathrm{X}=1500 / \mathrm{Y}=1.000 / \mathrm{Z} . .\).

The computer knows
- sense of rotation (GO2)
- position and size of the \(90^{\circ}\) arc (statement of coordinates of end point PE of \(90^{\circ}\) arc).

The starting coordinate \(\mathrm{P}_{\mathrm{O}}\) of the \(90^{\circ}\) arc is known to the computer from the previous block.

In the computer, this quadrant is divided into 90 steps of \(1^{\circ}\) each.


\section*{Manufacture of the \(90^{\circ}\) arc}

The computer instruction is:
Traverse all 90 steps of the programmed quadrant.
```

We instruct the computer to edit
only a part of the 90 steps.

```
This is done with the M99 information
\(J=0 \quad\) to \(\quad K=30\)

\section*{Flow in the computer}

```

N99/GO1/X=O/Y=5OO/Z.....
N10O/GO2/K=15OO/Y=100O/Z
N1O1/M99/J=O/K=30

```
1. The computer checks whether starting and end coordinates of the \(90^{\circ}\) arc are correct.

It compares the coordinates of blocks N99 and N100
2. The computer asks whether there is a M99 instruction in the following block.


A1. 90 steps are edited

Yes

- It calculates ("theom retically") all steps up to J.
- It edits traverse inswumctions from \(J\) to \(k\)
- It calculates from K to \(90^{\circ}\) without editing instructions.

\section*{Programming \(\alpha \neq 0^{\circ}\) to \(\alpha=90^{\circ}\) in absolute Mode}

```

1. Programming to point PA
N100/GO1/X616/Y468/Z....
2. Arc = 28% to }6\mp@subsup{7}{}{\circ
2.1: Description of the 900 arc:
N101/GO2/X1616/Y1468/Z....
The absolute coordinates of the quadrant
end point PE are described starting
from point PA.
By computation this is the end point of
the quarter arc.
XE = XA +/R/
YE = YA +/R/
ZE = ZA
2.2. N102/M99/J28/K67
```

\section*{Fiow of data in the computer Manufacture}
1. The computer checks whether coorm dinates of starting point \(P A\) and quadrant end point \(P E\) are correct (absolute).
2. M99 instruction exists.
a) Computer proceeds up to J28
( \(=28^{\circ}\) ) - without traverse inm struction.
b) It gives traverse instructions from J28 to K67 (280-670). The impulses from J 28 to K 67 are worked through. The indicated quadrant is manufactured from starting point PA to target point \(P Z\).

\section*{A Method of programming Arcs \(\alpha \neq 90^{\circ}\) (absolute)}
```

With partial arcs }\mathcal{C}\not=9\mp@subsup{0}{}{\circ}\mathrm{ it is often ne-
cessary to calculate starting and target
point of the previous and the following
blocks: thus it is useful. to establish a
chart.

```

\section*{Specification:}
```

PA - Starting point of partial arc of
circle
PZ - Target point of partial arc of
circle
PE = Ena point of quadrant ("theoreti-
cal" target point)
PO - Starting point of quarter arc.

```

\section*{Examples:}




Coordinates


PA: PA is the target point of the block before the circle programing

XA
YA
ZA
\(\frac{P E: ~ " T h e o r e t i c a l " ~ e n d ~ p o i n t ~ o f ~ t h e ~}{\text { quarter arc }}\)
\(\mathrm{XE}=\mathrm{XA}+\mathrm{R}\)
\(\mathrm{YE}=\mathrm{YA}+\mathrm{R}\)
\(\mathrm{ZE}=\mathrm{ZA}\) (interpolation in the plane)

PZ: Programmed target point


Coordinates path of the partial radius
\(\triangle X=X P Z-X P A\)
\(\triangle Y=Y P Z-Y P A\)
\(\Delta z=0\) (interpolation in the plane)

Po: Theoretical starting point of the quarter arc
\(X O=X A-a\)
\(Y O=Y A-b\)
\(Z O=Z A\)


Exercise:
Put in \(X, Y\)-values, \(Z\)-value \(=0\)
\begin{tabular}{|c|c|c|c|} 
& \(X\) & \(Y\) & \(Z\) \\
\hline\(P A\) & & & \\
\hline\(P E\) & & & \\
\hline\(P Z\) & & & \\
\hline\(P O\) & & & \\
\hline
\end{tabular}

Program the path

W-PA-Pz-P1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & ( \({ }_{\text {( })}\) & \({ }_{\text {(3) }}{ }^{\text {( }}\) ( \()\) & (k) \({ }^{\gamma}\) (s) & \(z\) & (1) \(\stackrel{F}{T}(\mathrm{H})\) & remarks \\
\hline & & & & & & \\
\hline
\end{tabular}


\section*{Exercise:}

Put in \(X, Y\)-values, \(Z\)-value \(=0\)
program path W-PA-Pz-P1
\begin{tabular}{l|l|l|l|l|}
\hline PA & X & Y & \(Z\) \\
\hline PE & & & \\
\hline PZ & & & \\
\hline PO & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & (M) & \[
(\mathrm{J})^{\mathrm{x}}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & \(z\) & \[
\left|\begin{array}{c}
\mathrm{F} \\
(\mathrm{~L})(\mathrm{H})
\end{array}\right|
\] & remarts \\
\hline & & & & & & \\
\hline
\end{tabular}


\section*{Exercise:}
slot 3 mm deep
Programming: in absolute mode Zero point of workpiece as in drawing.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & G \({ }_{\text {(M) }}\) & \[
(j){ }^{\mathrm{x}}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & 2 & \[
\mathrm{G}(\mathrm{~T})(\mathrm{H})
\] & remarks \\
\hline & & & & & & \\
\hline & & & - & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{G04 - Dwell}


If you manufacture a borehole and withdraw the arill after you have reached the desired depth, then the chip will be torn off. The base of the borehole has steps.

With boxenoles of tapered shape this often does not matter. With shouldered boreholes, however, it can be disturbing.

The same applies for milling cuttexs of larger diameter or for fly wheel cutter if you move away suddenly.

You have an unwanted shoulder in the workpiece.

In such cases a dwell should be programed.

Programming


The tool remains 0,5 seconds in the programmed position of the previous block.

\section*{G21 - Empty Line}

You may program as many empty lines as you wish in a program.
The empty lines are jumped over in the program sequence.
In the place of empty lines you can program at later stage other \(G\) or auxiiiary functions.


\section*{Subroutines G25/M17}

The subxoutines are "managea" by the main program.

In the madn program the movements are programmed up to the starting point for the subroutines.


\section*{Subroutines}
```

It happens guite often that various mililng
opexations of same shape are manufactured
at one and the same workpiece.

```


\section*{Example}
- 4 geometrically identical pockets.
- For the manufacture of each pocket the miling cutter has to be moved to working position.
- The programing and manufacturing process is the same for each individual pocket. You program in one program pocket milling for 4 times.

These icentical operations may be programmed just once and then "stored". If they are needed they are called up

\section*{To our example}
1. The tool is moved to the first milling start point.
2. The subroutine is called up. The first pocket is being milied.
3. The tool is then moved to the second milling start point.
4. Subroutine is called up.
5. The tool is then moved to the third milling start point.
G. Subroutine is called ap.
etc.

\section*{Principle: Call-up of Subroutine and Sequence on F1-CNC}


\title{
Subroutine-Programming \\ G25 Jump to Subroutine \\ M17 Jump back to Main Program
}

1. Programming up to the first start of the subroutine (assume NOS).
2. Call up subroutine 625 in block NO6: NO6/G25/L100
- With G25 the subroutine is called up.
- Under the \(F\)-address we describe the block number with which the subroutipe begins.
In this case the subroutine begins with block no. Nioo (the block no. is selected by the programmex).
3. The subxoutine:

N100/
N101 ...
N1O2 ...
N103...
N104 ...
N105/GO1
In the subroutine the operation to be repeated is described (block N100 to block N1O5)
4. Jump back instruction M17:

At the end of a subroutine you have the jump back instruction Mi7. The program jumps to the following block with which the subroutine was called up.

\section*{Example}
- Programming main program: absolute

- Programing subroutine: incremental
- Zero point of workpiece as in drawing
- Reference point set-off as in drawing
- Diameter of milling cutter 8 mm

Continue the program. Start point shall be end point of program.

In block NOS the workpiece zero-point is programed again.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & ( \({ }_{\text {(M) }}\) & (J) \({ }^{\mathrm{X}}\) (0) & (K) \({ }^{\gamma}{ }^{(S)}\) & \(z\) & \(\stackrel{\mathrm{F}}{(1)}\) \\
\hline 00 & 92 & -3000 & 0 & 3000 & \\
\hline 1 & MOS & 0400 & 52000 & 0 & T01 \\
\hline 2 & \(\infty\) & 900 & 900 & 3000 & \\
\hline 3 & 00 & 900 & 900 & 200 & \\
\hline 4 & 25 & & & & 450 \\
\hline 5 & 92 & 900 & 900 & 200 & \\
\hline 6 & \(\pm 0\) & 3400 & 900 & 200 & \\
\hline 7 & 25 & & & & \(\angle 50\) \\
\hline 8 & & & & & \\
\hline 9 & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 50 & 91 & & & & \\
\hline 51 & 01 & 0 & 0 & -600 & 70 \\
\hline 52 & 01 & 700 & 0 & 0 & 140 \\
\hline 53 & 01 & 0 & 700 & 0 & 140 \\
\hline 54 & 01 & -700 & 0 & 0 & 140 \\
\hline 65 & 01 & 0 & -700 & 0 & 140 \\
\hline 56 & 00 & 0 & 0 & 600 & \\
\hline 57 & \(M 17\) & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}


\section*{More Subroutines}

You can write as many subroutines in a program as you like.

\section*{Example}

The slots \(1+2\) are subroutine no. 1. The slots \(3+4\) are subroutine no. 2. The program shows an incremental main program.

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & & & ． & \\
\hline & & & ． & & \\
\hline & & & & & \\
\hline \[
\underset{y}{(H)}\binom{1}{3}
\] & 2 & （s）\({ }_{\lambda}(\mathrm{y})\) & （0）\(x^{(r)}\) & \(\stackrel{(w)}{\square}\) & N \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{tabular}

＊wit 9 Iबन
＊قрош TPquamoxout uT seutanoxqns－ －britmexp ut se ooetaxiom 10 futod oxez－ －Guthexp ut se autod \(7 x e 7 s\)－
－seutznox


orduex

\section*{Part of a subroutine}

You can also call up parts of subroutines.


\section*{An example:}
- Slot (1) and slot (2) are identical and contained in cxoss slot 3 and 4.
- You write a subroutine for slot 3 and 4 .
N100/G91
N101/GO1 to


N 108
N109/M17
You can use block NiO5 to 108 for the manufacture of slot 1 and 2 .
```

It is possible to call up parts of a
subroutine.
In this example:
Block N1O5 to N109/M17

```

\section*{Part of a subroutine program}

The scheme shows an incremental main program. In an absolute main program you have to determine the workpiece zero-point with G92.

NOO
:
No5 Milling cutter is positioned for subroutine


\section*{Example G25/M17}


Program this example:
\[
\begin{aligned}
& \text { Width of slot } 6 \mathrm{~mm} \\
& \text { Depth of slot } 5 \mathrm{~mm} \\
& \text { Zero point of workpiece as in drawing } \\
& \text { Decide yourself between absolute or } \\
& \text { incremental value programing. } \\
& \text { Start polnt as in drawing. }
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
\text { (d) }{ }^{\mathrm{X}}(\mathrm{D})
\] & \[
(K)^{Y}(S)
\] & \(z\) & \[
\frac{F}{(E)(T)(H)}
\] \\
\hline & & & & & \\
\hline & & - & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{tabular}


\section*{Example:}

You have to mill a rectangular slot. Since the slot is deep you need a few runs; these are identical in the XYplane.

\section*{Example:}
- Mill cutter is already cutting at block -no. NOO5.
- NOO6 is jump to subroutine.
- The subroutine consists of block:N101 to N105.
- N105 is jump back to main program.
- Noo7 is infeed in main program.
- NOO8 is jump to subroutine.
etc.

Exercise

Program the workpiece. The cepth of cut shall be reached in 3 runs.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & (M) & \[
(0){ }^{\mathrm{X}}(\mathrm{O})
\] & \[
(k)^{Y}(S)
\] & \(z\) & \[
\stackrel{F}{(L)(H)(H)}
\] & remarks \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & . & . & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline . & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline - & & & & & & \\
\hline & & & & & & \\
\hline - & & & & & & \\
\hline & & & & & & \\
\hline - & - & & & & - & \\
\hline & & & & & & \\
\hline & & . & & & & \\
\hline & & & - & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & - & & & \\
\hline
\end{tabular}

\section*{Exercise}
－Make a sketch indicating the start point
－Determine the zero point（w）
－Main progxam：absolute
－Circusar slot in 2 runs

Depth of siot 10 mm
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\begin{aligned}
& \mathrm{G} \\
& (\mathrm{M})
\end{aligned}
\] & \[
(\mathrm{J})^{\mathrm{X}}(\mathrm{D})
\] & \[
\left(\mathrm{K}^{Y}{ }^{\mathrm{Y}}(\mathrm{~S})\right.
\] & z & （L）\({ }_{\text {（1）}}(\mathbf{H})\) \\
\hline & & & & & \\
\hline & & & － & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{The Nesting of Subroutines}

\author{
Call-up - Sequence
}


\section*{G27 - Jump Instruction}

Format N3/G27/L3
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & \[
(\omega)^{x}(\mathrm{D}) .
\] & (k) \({ }^{Y}(\mathrm{~S})\) & z & \(\underset{(L)(T)}{F}(\underline{H}\) \\
\hline & & & & & \\
\hline & & & & & \\
\hline 17 & 27 & & & & 110 \\
\hline 18 & & & & & 4 \\
\hline & & & & & \\
\hline \(\vdots\) & & & & & \\
\hline : & & & & & \\
\hline 110 & 0 & 3 & \(C\) & 3 & \\
\hline \(\because\) & & & & & \\
\hline : & & & & & \\
\hline & & & & & \\
\hline 120 & 27 & & & & 018 \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
```

With thts instruction you can Jumb for-
warc or backward within the program.

- Uncer the In(F) address the block is
Drogrammed urtil to the ome where
the program shall be skmpped.

```

\section*{Example}

Block 17
Instruction to jump to block 110

B10ck 120
Instruction to jump back to Nis

\section*{Application}

- The surface of the workpiece shall be worked or not.
- You describe a finishing program (N4 to N12):
- In the block preceeding the finishing operation you program G2i.
- In blocks N4 to N12 the Einishing cut is carried out.


\section*{Jump instruction}

If the surface should remain untinished: Delete N3/G21
Program N3/G27/L13

The blocks N4 to N12 are skipped.

\title{
The Cutter Radius Compensation Parallel to Axis
}

G40 - Cancel the compensation
G45 - Add cutter radius
G46 - Deduct cutter radius
G47 - Add cutter radius twice
G48 - Deduct cutter radius twice

\(\mathrm{G} 45 / \mathrm{G} 46 / \mathrm{G} 47 / \mathrm{G} 48\) are self-maintaining
functions. They are revoked by G40
or M30 (program end). G45 can be over-
written by G46/G47/G48 and vice-versa.

Before programing G45/G46/G47/G48 you have to describe the tool data under MOG.


In examples up to now we have always been programming the center line path of the cutter. With the lengths to be woxked the cutter radji had to be added or deducted.
This calculation work can be taken over by the computer, if appropriate informations are given.

\section*{G45 - Adding Milling Cutter Radius}


\section*{Programming incremental}
```

The milinng cutter shalj touch the in-
side of the contour.
Conventional programming:
N.../GOO/X=I+r/
The radius has to be added to the length
1.

```

Programming with G45 (Adding Cutter Radius)
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(0)^{x}(0)
\] & \[
(K)^{Y}(S)
\] & z & \[
\underset{(\mathrm{L})(\mathrm{T})}{\mathrm{F}})
\] \\
\hline . & M06 & D 500 & S2000 & 0 & TOM \\
\hline & & & & & \\
\hline
\end{tabular}
1. The computer has to know the cutter radius so that it can caiculate the correct movement ( \(1+r\) ).

In one of the previous blocks the tool data have to be described, otherwise alarm sign Al8.

2. Call up G45:*

Add cutter radius ance.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline\(\ldots\) & \(M 06\) & \(D 500\) & 52000 & 0 & \(T 01\) \\
\hline & & & & & \\
\hline & & & & & \\
\hline & 645 & & & & \\
\hline\(\cdots\) & 00 & 3000 & 0 & 0 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
3. Program movement.

Measure L (30)
The computer picks up the tool data from the MO6 instruction which was programed last.

Cancel the cutter radius compensation: N. . ./G40

\section*{G46 - Deducting the Cutter Radius}


\section*{Mode of programming: incremental \\ Cutter shall touch outex contour. Cutter dia. 10 mm}

\section*{Programming:}
\(\mathrm{N} 100 / \mathrm{MO} / \mathrm{D} 500 / \mathrm{S} 2000 / \mathrm{Y}=0 / \mathrm{T}(\mathrm{F}) 1\) N101/G46
\(\mathrm{N} 102 / \mathrm{GO1} / \mathrm{X}=\mathrm{L} / \mathrm{Y}=\mathrm{O} / \mathrm{Z}=0 / \mathrm{F} . \mathrm{C}\)
The cutter moves by the distance \(\mathrm{d}-\mathrm{D}\).


\section*{Approaching an Edge - Not parallel to Axis}

Programming: incremental
```

Cutter dia. 16 mm
Reference dimension }\mp@subsup{\textrm{H}}{Z}{}=
NO1/MO6/D800/S1700/Y=0/T(F)1
NO2/G46
NO3/GO1/X4000/Y2000/Z=0/F...
NO4/M30

```

Approaching an Edge - Not parallel to Axis Proaramming: absolute
- Cutter dia. 16 mm
- Zero-point as in drawing

NOO/G92/X-4000/Y-3500/21000/
\(\mathrm{NO1/MO6/D800/S2000/Z=0/TO1}\)
NO2/G46
\(\mathrm{NO} 3 / \mathrm{GOO} / \mathrm{X}=\mathrm{O} / \mathrm{Y}=0 / 21000\)
NO4/M3O

\section*{Exercises G45/G46}
- Program the distance/traverse \(\mathrm{P}_{1}{ }^{-\mathrm{P}_{2}}\) n absojute and incremental mode.
- Radius D: 12 mm
- Zero-point from point El.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\begin{gathered}
\mathrm{G} \\
(\mathrm{M})
\end{gathered}
\] & \[
(0){ }^{x}(D)
\] & \[
(K)^{Y}(S)
\] & \(z\) & \[
(\mathrm{L}) \stackrel{\mathrm{F}}{\mathrm{~T})}(\mathrm{H})
\] \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\stackrel{G}{M}
\] & \[
\text { (u) }{ }^{x}(D)
\] & \[
\left(K^{\gamma}{ }^{\gamma}(\mathrm{S})\right.
\] & \(z\) & (4) F ( \((\mathrm{H})\) \\
\hline & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(0)^{x}(0)
\] & \[
(K)^{Y}(S)
\] & \(z\) &  \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(\mathrm{J}){ }^{\mathrm{x}}(\mathrm{O})
\] & \[
\left.()^{Y}\right)^{(S)}
\] & 2 & \(\frac{F}{(L) T)(4)}\) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{G47 - Add Cutter Radius Twice}
- Outside contour shall be milled
- Mode of programming: incremental
- Cutter radius 6 mm
- Starting point as in drawing


\section*{Programming:}

NOOO/MO6/D600/S2000/Z=O/T(F) 1 N1/G46.
\(\mathrm{N} 2 / \mathrm{GO1} / \mathrm{X} 2000 / \mathrm{Y} 1500 / \mathrm{Z}=0 / \mathrm{F} \ldots\) N3/G47
\(\mathrm{N} 4 / \mathrm{GO1} / \mathrm{X} 4000 / \mathrm{Y}=\mathrm{O} / Z=\mathrm{O} / \mathrm{F} \ldots\)
\(N 5 / G O 1 / X=0 / Y 3000 / Z=0 / F \ldots\)
\(\mathrm{N} 6 / \mathrm{GO1} / \mathrm{X}-4000 / \mathrm{Y}=0 / \mathrm{Z}=\mathrm{O} / \mathrm{F}+\ldots\)
\(\mathrm{N} / \mathrm{GO1} / \mathrm{X}=0 / \mathrm{Y}-3000 / \mathrm{Z}=\mathrm{O} / \mathrm{F} \ldots\) N8/G46

N9/G00/X -2000/Y \(-1500 / Z=0 /\) N10/M30

Block N4 to N7
Cutter radius is added twice.
Block NO2, N9
Cutter radius is deducted once.

\section*{Programming exercise:}

\section*{Cutter racius 5 mm}

Incremental programming
staxting from point \(\mathrm{P}_{1}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(N\) & \[
\underset{(M)}{G}
\] & \[
{ }_{(\mathrm{J})}^{\mathrm{X}}{ }_{(\mathrm{D})}
\] & \[
(\kappa){ }^{Y}(\mathrm{~S})
\] & \(z\) & \[
\left|\begin{array}{c}
F \\
(\mathrm{~L})(\mathrm{T})(\mathrm{H})
\end{array}\right|
\] \\
\hline & & & & & \\
\hline
\end{tabular}

Absolute programming
Detemining the zerompoint starting from point \(\mathrm{P}_{1}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(N\) & (M) & (0) \({ }^{x}\) (D) & (K) \({ }^{\gamma}(\mathrm{s})\) & z & \(\underset{\text { (L) (T) }}{\text { F }}\) (H) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{G48 - Deduct Cutter Radius Twice}

\author{
Example: Miliing an inside contour \\ - Milling cutter radius 6 mm \\ - Mode of programing: incremental
}


Block N3: move in
Block N5 - N8: inside contour
Block N9: move out of inside contour
Block N11: withdrawal to starting position

\section*{Program:}

NOOO/MO6/D600/S2000/Y=O/T(F) 1
N1/G45
N2/G00/X2000/Y1500/Z=0
\(\mathrm{N} 3 / \mathrm{GOL} / \mathrm{X}=\mathrm{O} / \mathrm{Y}=\mathrm{O} / \mathrm{Z}-500 / \mathrm{F} \ldots\)
N4/G48
N5/GO1/X4OOO/Y=O/Z=O/F...
\(\mathrm{N} 6 / \mathrm{GO1} / \mathrm{x}=0 / \mathrm{Y} 3000 / \mathrm{Z}=0 / \mathrm{F} \ldots\)
\(\mathrm{N} 7 / \mathrm{GO1} / \mathrm{X}-4000 / \mathrm{Y}=0 / Z=0 / \mathrm{F} \ldots\)
\(\mathrm{NB} / \mathrm{CO1} / \mathrm{X}=0 / \mathrm{Y}-3000 / \mathrm{Z}=0 / \mathrm{F} \ldots\)
\(\mathrm{NQ} / \mathrm{GO1} / \mathrm{X}=0 / \mathrm{Y}=0 / 2500 / \mathrm{F} \ldots\)
N1O/G45
N11/G00/X \(-2000 / Y-1500 / Z=O / F \ldots\) N12/M30

\section*{Exercise:}

Cutter radius 5 mm

Incremental programming

Starting From point \(P_{1}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G})}
\] & \[
(\mathrm{J}){ }^{\mathrm{X}}(\mathrm{D})
\] & \[
(K)^{Y}(S)
\] & 2 & \[
\underset{(\mathrm{L})(\mathrm{T})(\mathrm{H})}{\mathrm{F}}
\] \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Absolute programming}

Determining the zero-point *
from point \(P_{1}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \(\stackrel{G}{\mathrm{G}} \mathrm{M}^{( }\) & (J) \({ }^{\mathrm{X}}\) (D) & \[
\left(k^{Y}(S)\right.
\] & \(z\) & \(\stackrel{F}{\text { F }}\) (L) (H) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Example: Combined Inside-/Outside Contour}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\cdots\) & (1) & (J) \({ }^{\mathrm{x}}\) (D) & (K) \({ }^{\gamma}{ }^{\text {(S) }}\) & z & \(\underset{(L)}{\text { (1) }}\) (t) & remarks \\
\hline \(\infty\) & M06 & 0500 & S2000 & 0 & TO1 & \\
\hline 1 & 46 & & & & & \\
\hline 2 & 00 & 3500 & 7000 & 0 & & \\
\hline 3 & 47 & & & & & \\
\hline 4 & 01 & 0 & 2000 & 0 & 100 & \\
\hline 5 & 40 & & & & & \\
\hline 6 & 01 & 2500 & 0 & 0 & 100 & \\
\hline 7 & 48 & & & & & \\
\hline 8 & 01 & 0 & 2000 & 0 & 100 & \\
\hline 9 & 40 & & & & & \\
\hline 10 & 01 & \(-2500\) & 0 & 0 & 100 & \\
\hline 11 & 47 & & & & & \\
\hline 12 & 01 & 0 & 2000 & 0 & 100 & \\
\hline 13 & 01 & 5000 & 0 & 0 & 100 & \\
\hline 14 & . 01 & 0 & -6000 & 0 & 100 & \\
\hline 15 & 101 & \(-5000\) & 0 & 0 & 100 & \\
\hline 16 & 46 & & & & & \\
\hline 17 & 00 & \(-3500\) & \(-1000\) & & & \\
\hline 18 & M30 & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}


\section*{Exercise:}
- Pxogram the example in absolute moce.
- Zero point as in Grawing.
- Cutter radius 5 mm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & \(\stackrel{(1)}{\text { (M) }}\) & (N) \({ }^{\mathrm{x}}\) (0) & (K) \({ }^{\text {Y }}\) (S) & \(z\) & (1) \({ }_{\text {(1) }}\) & remarks \\
\hline & & & & & & \\
\hline & & & - & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{G64 - Switching Feed Motors Currentless}


The previously programmed \(G-\) and \(M\)-codes remain stored.


Switching currentless with program stored

G64 is a pure switching function. It is not stored.
1. Press key \(\square\) until G-lamp flashes.
2. When a number appears on the VDU, press key DEL
3. Key in 6 4.
4. Press key INP, the feed motors are now currentless.

\section*{G72 - Pocket Milling Cycle}

Pockets axe a quite common shape when miliing. The programming work of many single blocks can be put together to a cyole. The computer offers a. Fixed sequence \(=\) cycle.

\section*{Programming G72}

1. G72
2. X-value, inside dimension of the pocket in \(X\)-direction.
3. \(x\)-value, inside dimension of the pocket in \(Y\)-direction.
4. Z-value \(=\) depth of pocket
5. F-value

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{C}
\] & \[
(j))^{x}(\mathrm{D})
\] & \[
(K)^{Y}(S)
\] & z & \(\stackrel{\mathrm{F}}{(\mathrm{L})} \mathrm{m}(\mathrm{H})\) \\
\hline & & & & & \\
\hline . & M06 & 3 & \(\square\) & \(\longrightarrow\) & 3 \\
\hline & & & & & \\
\hline \(\cdots\) & 72 & \(\bigcirc\) & \(\square\) & 5 & \(\square\) \\
\hline & & & & & \\
\hline
\end{tabular}

With this block the machine cannot mill a pocket yet.
- It does not know the radius of the cutter and thus cannot, calculate the movements.
- Therefore, the tool has to be desoribed in one of the previous blocks (M06) .

The computer uses these data (cutter radius) to calculate the effective movements which were programed last.

If no MO6 was programed before, alarm sign 15 will appear.


The milling cutter has to be positioned before the pocket miling can start.
1. The outter moves into the pocket by the \(Z\)-value, if a \(Z\) movement is programmed.

2. Mi11ing out (reaming) a pocket:
- The first movement is in \(x-d i r e c-\) tion.
- The signs determine the sequence of the traverse.


Overlap:
The ovexlap is \(1 / 10\) of the cut-
ter radius (with 5 mm radius approx.
O, 5 mm ).
The computer takes the information about the radius from the MO6 block which was programmed iast.

```

3. Finishing ram:
The Gides are being finished. Traverse
10/11/13. Finishing measure approk.
1/10 of the cuttex radius.
```
4. Cutter moves out of pocket (Z-direction) into starting position. The pocket miluing cycle is complete.

```

Pockets can be programmed in absolute
or incremental mode.
Incremental programming:
X,X,Z values are given from the starting
position.

```

\section*{Technological tip}

When moving in a milling cutter the feed should be approx. haive of the normal cutting feed.
Therefore it is advisable to program this first movement in an extra block.

\[
X \text {-value } \quad Y \text {-value } \quad Z \text {-value }
\]

M06
```

D(X) = Cutter racius
S(Y) = Speed
Z = Hz
T(F) = Tool number

```
```

X = Inside measurement of pocket
Y = Inside measurement of pocket
Z = Infeed depth
F=Feed

```

The computer will calculate all rem ference points automatically.


\section*{Example:}
+ Cutter aiameter 10 mm
+ The pocket is programed incrementally
+ Start position for cycle as in drawing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(\omega)^{x}(D)
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & \(z\) & \[
\underset{(\mathrm{L}) \stackrel{\mathrm{F}}{\mathrm{n}}(\mathrm{H})}{ }
\] \\
\hline & & & & & \\
\hline 05 & 00 & & & & \\
\hline 06 & M06 & 500 & 2000 & 0 & 01 \\
\hline 07 & 72 & 4000 & 3000 & \(-500\) & 5 \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\(N 5=\) Move to start position
N6 = Tool data
N 7 = Pocket milling cycie


\section*{Example：}
－Cutter diameter 8 ma
－Programming mode：incremental

\section*{Example：}
o Programming mode：absolute
－Determine the zero point of the workpiece
o Mill the pockets in two runs with twe subroutines，if you know G27 already．

\section*{Boring}
```

With GOO and go1 you can execute boring
operations:

1. You program with GO1 (feed) at cesired
depth of bore
2. With rapid traverse you move to the
starting point of the boring operation.
The procedure is always che same one:

- Boring with feed (GOL) to length L
* Withdrawal by Length L with goo.
Therefore these two movements are put to-
gether in one G-function (cycle).

```

\section*{G81 - Boring Cycle}

Programming:
N. . ./G81/Z \({ }^{ \pm} \ldots\). . ./F...

Under the z-adaress you program the depth of bore.
F-address: feed in mm/min
The withdrawal is done automatically with GOO.


\section*{Application:}

Phrough holes with a not too large depth of bore.

\section*{G82－Boring Cycle with Dwell}
```

If the depth of bore is reached, the with-
drawal with G81 starts immediately (rapid
traverse). The bore chip is torn off. -
The surface at the base of the hole is not
clean.
Therefore the drili bit remains in the
programmed position Z.

```


Sequence
1．First movement：with feed

2．If depth of bore is reachec，the drill bit turns without feed 0,5 seconds．

3．Withdrawal in rapid traverse．

Programming：
N．．．／G82／Z \(\pm \ldots /\) ．．．．


\section*{Application：}

Bland holes of medium depth．

\section*{G83 - Withdrawal Cycle}

- It happens quite often with deep bores that the chips are not flowing out properly.
- Therefore you have to withdraw the drill bit in order to take away the chips.

You can program the operation with GO1/GOO/GO1/GOO etc. or with various G81 or G82 cycles.

The drawing illustrates the principie, that a few cycles are again put together to a new cycle.


Programing G83:
N.../G83/Z \({ }^{+} \ldots . . \mathrm{F}^{+}\).

The final depth of bore and the feed axe to be programmed.

Procedure:
1. Bore at 6 mm depth with feed
2. Withdrawal with rapia traverse ( 6 mm )
3. With rapid traverse \(5,5 \mathrm{~mm}\) and 6 mm feed
4. Go to starting point with rapid traverse
5. With rapid traverse 11 mm , with feed 6 mm etc. until you reach the programmed \(Z\) value.


Application: Deeper bores

\section*{Example:}

Pay attention to the technological data. Use drilling emulsion to protect the drill bit.
Bores larger than 10 mm dia, need to be rough-drilled.

Use G81, G82, G83.


\section*{G85 - Reaming Cycle}

In order to achieve bores with a high surface quality, reaming of bores is necessary.

Using standard twist drill you may reach
quality 11 to 12 . For higher quality standayds the bores have to be reamed. By reaming you reach quality 6.


G85 is a combination of two GO1 commands.

\section*{Programming:}
- Block number
- G85
- Z-value
- Feed F


Note:
The depth of the bores to be reamed is indicated in the technical drawing. The bore-length 25 has a tolerance measurement.

\section*{G 89 - Reaming Cycle with Dwell}

The sequence is the same as with G85. The reamer bit zemains 0,5 seconds in
the dead position if the programed depth is reached.

\section*{Sequence}

Chapter 6Tools, tool lengths compensation,radius compensation of milling cutter
Programming of tools ..... 6.1
Tool lengths compensation (principle) ..... 6.3
Working with various tools ..... 6.5
1. Determining the tool sequence ..... 6.7
2. Determination of tool data 2.1. Diameter, technological data ..... 6.7
2.2. Detecting the tool length differences ..... 6.9
3. Calculation of tool lengths ..... 6.13
4. Tool lengths compensation in the program sequence ..... 6.15
5. Tool lengths corrections ..... 6.17-6.21
Other cases for programming M06 ..... 6.23
Connection: Zero-point offset G92
Tool lengths compensation M06 ..... 6.25
Milling of chamfers ..... 6.27-6.33
Depth of bore with spiral drill ..... 6.35
Tool data sheets
Tool sheets

\section*{The Programming of the Tools}


Tool magazines of industrial NC-machines are equipped with up to 50 or more tools.

The secuence is programmed.
Technological data and dimensions have to
be programed for each individual tool bit.

Tools are programed using the T-address.
T stands for tool.

\section*{Tool Lengths Compensation}


T01
M06/D ..../S ..../Hz \(=\) O/T01

T02
M06/D \(\ldots / \mathrm{S} \ldots / \mathrm{Hz}=+\ldots . / \mathrm{T} 02\)

T03
M06/D ..../S:.../Hz=-.../T03

The computer is given information on the taxget position or desired position.

Imagine the coordinate system transferred into the reference plane of the tool.

The target position is described starting from the actual position.

\section*{Working with various Tools}

> Determining the tool sequence
> Detecting the tool data Compensation of tool lengths


For the manufacture of a workpiece you often need different tools: drills, various milling cutters ete.

The programer needs to know various data such as
- kinds of tools
- application of different tools,
- position of tools to each other
1. The milling cutters are of different diameters. These are known'to you.
2. The tools are of different lengths. These are not known to you. You have to measure the lengths and take them into consideration when programming. Otherwise you move the cutter in the air without chip removal or you run it into a workpiece (crash).

\section*{Procedure}

\section*{1. Determining the tool sequence}


Facing with T1


Milling a slot with T 2


Milling a T-slot with T3

\section*{2. Determination of tool data}

\subsection*{2.1. Diameter, technological data}


\subsection*{2.2. Detecting the Tool Length Differences ( Hz )}


The diffexerices in tool Iengths have to be measured. The measurements can be taken using an external presetting device, In many cases the measuring system within the CNC-machine is taken use of.

You can seratch with all tools a reference surface or measure the data using a dial gauge.

The difference is called \(\mathrm{H}_{2}\).

> Procedure
> Mount T (reference tool) and scratoch reference surface, set dial gauge res pectively.

Detection of data by scratching

Scratching only when cutter is turning


Decection of data with dial gauge.

Set dial gauge when machine is at stand-sti土1.


Set dial gauge to 0 .


\section*{Mount T2}


Scratch surface


Touch diai gauge with cutter until ite shows 0 .
\begin{tabular}{|c|c|c|c|c|}
\hline & T1 & 12 & T3 & 14 \\
\hline & &  & & \\
\hline \(d\) & & & & \\
\hline \(0=\frac{d}{2}\) & & & & \\
\hline \(F\) & & & & \\
\hline \(t\) & & & & \\
\hline 5 & & & & 2 \\
\hline Hz & 0 & 650 & 2 & \\
\hline HzK & & & & \\
\hline
\end{tabular}
Read value from display.

Enter value into tool data sheet. In this way you determine all tool lengths.
Pay attention to the signs!

\section*{3. Calculation of Tool Lengths (Tool lengths compensation)}

Since these data are known you could take the various lengths into consideration. This would, however, be quite confusing calculation work and will often lead to mistakes.

Calculation of tool length M06
(Tool lengths compensation) (Programming)


The data are entered into the programming sheet.
\[
\begin{aligned}
\mathrm{T}= & \text { tool number } \\
\mathrm{D}= & \text { milling cutter radius } \\
\mathrm{S}= & \text { spindle speed (only for your in- } \\
& \text { formation) } \\
\mathrm{H}_{Z}= & \text { difference in tool length }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
(v)^{x}(\mathrm{D})
\] & \[
(K){ }^{Y}(S)
\] & \(z\) & (L) \(\mathrm{F}_{\text {(H) }}\) \\
\hline N... & M06 & 2000 & 1100 & 0 & 1 \\
\hline & & 4 & 1 & 1 & 4 \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & 1 & & 1 & \\
\hline N... & M06 & 500 & 2000 & 650 & 2 \\
\hline & & 1 & 4 & 4 & 1 \\
\hline & & & & & \\
\hline & & + & & & \\
\hline & & & & & \\
\hline & & & \[
5
\] & & \(\square\) \\
\hline
\end{tabular}


\section*{Tool Lengths Compensation in the Program Sequence}


The first tool (TOl) has a Hz value \(=0\).


Fixgt the tool TO2 moves from the actual position to the target position.

Then the manufacture itself starts.


\section*{Tool Lengths Corrections}


You have finished the manufacture of a workpiece and find out that the \(Z\) m measurement is not correct.
- The program is correct
- The starting position of the cutter is correct.

What is the reason?
The target value information ( \(\mathrm{H}_{z}\) value)
was not correct (wrong, inaccurate measurements, cutter not resharpened).

TARGET INFORMATION Hz wrong

```

MO6/D.../S.../Z+ 12.43/TO2
The target information Hz has to be
corrected.
Hzk = Corrected target information
Hzk}=\textrm{Hz}+(\pm\mathrm{ correction value }\trianglez

```
M06/D.../S.../Z \(+1100 / T 02\)

\section*{Example of a Correction of the Hz -value}


You may
1. Measure tool once again
2. Detect the correction value by measuring the workpiece.

The Hz information has to be corrected by the \(\Delta z\) value.

- Imagine the coordinate system transferred to the \(Z\)-actual position of the workpiece.
- Add the correction value \(\triangle z\) to the target information Hz of the tool bit.

Pay attention: \(\triangle \mathrm{z}\) may have \(\pm\) sign.
\(\mathrm{Ezk}=\mathrm{Hz}+(\ddagger \Delta Z)\)
\(=15.4+(-\Delta Z)\)
\(=15.4-1.35\)
\(\pm 14.05\)

The value \(\mathrm{Hzk}=14,05\) is corrected in the programming sheet, tool data sheet and in the memory.

\section*{Example}

Programmed Hz-value (actual information):
-6.25 min

Workpiece measurements: Actual and taxget, compare drawing.


Correct the Hz-value
\(\mathrm{Hzk}=\mathrm{Hz}+( \pm \Delta \mathrm{Z})\)
Pay attention to the sign of \(\Delta z\).
\(\mathrm{Hzk}=\ldots .\).

\section*{Example}
```

Hz of TOL $=0$
Hz of $\mathrm{TO} 2=-4,32$

```


Workpiece:
Actual value \(T 01=10,5 \mathrm{~mm}\) Actual value \(\operatorname{TO} 2=5,2 \mathrm{~mm}\)

Target value \(\mathrm{TOL}=10 \mathrm{~mm}\) Target value \(\mathrm{TO}=6 \mathrm{~mm}\)


Correct the Hz-values of TO1 and TO2.
\begin{tabular}{l|l|l} 
& TO & TO 2 \\
\hline Hzk & & \\
\hline
\end{tabular}

\section*{Other Cases for Programming M06}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (J) \({ }^{\mathrm{X}}\) (D) & (k) \({ }^{r}\) (S) & z & \(\stackrel{(4)}{(1)(H)}\) \\
\hline & M06 & (D) 500 & & & \\
\hline & & \(\longrightarrow\) & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & 646 & \(\underline{4}\) & & & \\
\hline & & & & & \\
\hline
\end{tabular}

If a G45, G46, G47, G48 or a G72 comm mand (cutter radius compensation) is programmed, in one of the previous blocks a MO6 has to be put in, otherwise the alarm sign will appear.
A16: Cutter radius information missing
The computer needs the cutter radius information \(D\) in order to calculate the compensated paths (G45, \(646,647,649\) )

The same applies with the pocket milling cycle G72.

Alarm A16

Cutter radius
information missing.

\section*{Connection:}

\section*{G92 Zero-point offset M06 Tool lengths compensation}


The Hz-information is an incremental target information within an indeperdent coordinate system.

\section*{G92}

The origin of the coordinate system is determined with G92.

\section*{Milling of Chamfers}

Chamfers are usually milled at an angle of \(45^{\circ}\).

The size of the chamfer is determined by the programmed path and/or by the cutting contour.
1. Chamfer size detemined by different cutter paths ldifferent distances between cutter axis and workpiece edge)

2. Chamfer size determined by different infeed and Z-direction. The cutter "path remains unchanged.


\section*{Programming a Chamfer with Cutter Path unchanged}


The contour is milled with a cutter of 10 mm dia.
To avoid the necessity to program a new cutter path for chamferring, the angle cutter shall be programmed in 2 direction such that a chamfer \(1 \times 1 \mathrm{~mm}\) is reached.


Cutter path a end mill
Cutter path - angle cutter

\section*{How deep has the Angle Cutter to be fed in?}

> The radius of the angle cutter which mills the inside contour of the chamfer:

Radius end mill
```

Width of chamfer

```
With a mill path using a 5 mm shank,
dia. 6 mm , the radius of the angle outw
ter produces the chamfer \(1 \times 45^{\circ}\).
\begin{tabular}{ll}
R \\
Angle \\
cutter & \(\left.\right|_{\text {Mill }} ^{5}\) \\
path
\end{tabular}

\section*{Angle cutter, dia. \(16 \times 4 \mathrm{~mm}\)}


With a \(45^{\circ}\) angle cutter, the cutting radius changes by one mm if the cutter is fed in by 1 mom.

\section*{Example}

\section*{Radius of mill path 5 mm}
1. Cutter at height o

Distance to workpiece \(=1 \mathrm{~mm}\)
2. Cutter fed in by 1 mm

Radius 5 m touches edge.

3. Cutter fea in by 2 mm

Chamfer \(1 \times 45^{\circ}\) is produced.
Measure of total depth:
Measure until radius mill path (1 mm)
\(+\)
Width of chamfer (1 mm)

\(=2 \mathrm{~mm}\)


\section*{Example}

Unchanged mill path
- Radius end mill: \(5,63 \mathrm{~mm}\)
- Chamfer \(0,67 \times 0,67 \mathrm{~mm}\)

Radius \(6,3 \mathrm{~mm}\) produces the chamfer contoun.
\(5,63 \mathrm{~mm}\) radius cutter path
\(+0,67 \mathrm{~mm}\) width of chamfer
\(6,30 \mathrm{~mm}\)

Cutter infeed
\(1,63 \mathrm{~mm}\) (radius touches contour)
\(0,67 \mathrm{~mm}\) (wiath of chamfer)
\(2,30 \mathrm{~mm}\) total infeed


\section*{The Depth of Bore with Spiral Drill}

```

Bhind holes are dimenshoned down to the flat ground of the bore.
If you want to calculate the tool length you either scratch the surface with the point of the drill bit or you take measurement of the length of the tool.
In order to program the indicated depth of bore you have to acid the length of the tool point.
$\operatorname{tg} 30^{\circ}=\frac{E}{\frac{a}{2}}$
$H=\operatorname{tg} 30^{\circ} \times \frac{d}{2}$

```


\section*{Drill Data for the Tool Sheet}


Always deduct value \(H\) From the measured data when you enter it. You need not to calculate anymore and can program the dimensions of the drawing directly.

Tool Data Sheet

Qut

\section*{Chapter 7 The M-Functions}

\section*{The M-Functions}

Miscellaneous or switching Eunctions.

\section*{M00 - Program Hold}


If you program MOO in a block, then the program will be interrupted.

Continuation of the program: press START Key.

When Do We Program MOO?
- Tool change
- Take measurements
- Switch to hand operation
- Carry out corrections etc.

\section*{M30 - Program End}



In the last block of a progxam you have to program M30. Otherwise the alarm sign \(A O S\) will appear.

Atter M30 the program jumps automatically to NOO. You can start anew.

If the DNC interface is mounted, M30 switches off the mair spindie (MOS is cancelled).

\section*{M03 - Milling Spindle on}
conly with accessory DNC-Interface)


The MO3 instruction switches on the milling spindle. Switch the miling spindle on such that the motor has enough time to run up and that you are in position to set the right rpm.

Important note MO3
Before pushing the start key the main spindle switch has to be set to CNC-position.

\section*{M05 - Milling Spindle Off \\ (only with accessory DNC-Intexface)}

When do we program Mo5?
- Before a tool change
- Before taking measurements
Note:
\[
\begin{aligned}
& \text { M30 switches off the miliing spindle } \\
& \text { too. } \\
& \text { MO6 switches off the milling spindle } \\
& \text { if } \mathrm{T}(\mathrm{~F}) \neq 0 \text {. }
\end{aligned}
\]

M06 - Tool Lengths Compensation


Compare chapter "Tool LengthsCompensation"

M17 - Jump Back Into Main Program


Compare "Subroutines"

M99 - Circle Parameter


M08, M09, M20, M21, M23, M26 are as switching functions not yet defined.
```

With them you could activate peripheri-
cal devices (under preparation!)

```

\section*{Chapter 8 \\ Input of Program, Corrections, Operation}
Survey ..... 8.1
What happens when data is put in? ..... 8.2-8.3
input format ..... 8.4
Indication on the screen ..... 8.5
Input of program ..... 8.6-8.7
Operating elements CNC; Program input ..... 8.9
Option key hand operation - CNC operation ..... 8.9
The word indication ..... 8.10
The figure keys, the minus key ..... 8.12
The memory key INP ..... 8.13
The \(\rightarrow\) key ..... 8.14
The FWD key ..... 8.15
The REV key ..... 8.16
The DELkey ..... 8.17
Input of \(M\)-values ..... 8.18
Take-over of registered values ..... 8.19
Inserting and deleting of blocks ..... 8.20
Deleting of a registered program ..... 8.21
Program Sequence ..... 8.23
Testrun ..... 8.25
Single block operation ..... 8.26-8.27
Automatic operation ..... 8.29
Interventions during program flow ..... 8.31-8.33- Program stop- Program hold

\section*{Input of Program Corrections Operation}

The knobs, displays, symbols, etc. will confuse you in the beginming.
So first put in the very simple programs and check the various function keys. In half an hour you will be accustomed to them.


\section*{Survey}


\section*{Sequence of Program}

\section*{Testrun:}

Inching through the program with M
Singse block operation
[1] + START
[2] \(+\square\)
\(3+\)
(first number key)
Automatic operation

START

Influencing the Program

Termination
INP + REV

Interruption
IMP + FWD

\section*{Storing of Program}

Compare tape operation RS-232 C opexation

\title{
What happens when Data is put in?
}

We put in gO1.
1. Secxetary interface element) reports to director:
"Somebody wants GO1!"

2. Directox (CPU = Central Processing Unit = Microprocessor) asks his specialists:
"Can we execute GO1?"

3. The specialists (EPROM = Programmable read-only memory) think and inform the director:
"Yes we can!"

4. The director instructs the memory operating program (RAM \(=\) Random access memory):
"Remenber GO1!"

5. The memory reports to the director: "O.k. I have noted it down!"

6. Director instructs his press-speaker (output element):
"Show them out there, that we are clear with GO1. We have everything understood and are ready for further inputs!"


What happens when Data is put in？

Data input


Digital read－out


Central processing
unit \(=\) Microproeessor （Director）


\title{
The Block Format or Input Format
}

According to the key number (G-, M-functions) you have to put in the required information. The computer will ask these infomations.

\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathbf{G}}
\] & \[
\text { (J) }{ }^{x}(D)
\] & \[
\left(N^{Y}(S)\right.
\] & 2 & (L) \({ }_{\text {F }}(\mathrm{H})\) \\
\hline 00 & 00 & 235 & 432 & & \\
\hline 01 & \(\square\) & & , & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Example:}

You have entered the \(X, Y\)-values with GOO. After the registration of the \(Y\) value the indication jumps to the next block number.

Why?
The compater knows that it can inter* polate only in two planes. After input of \(X\) - and Y -values it sets the \(Z\)-value automatically to \(O\) (with incremental progranming).

\section*{Example:}

If you, however, have programed the x-value with zero, the computer will ask for a z-value.

\section*{Example:}

With absolute programming mode the computer asks all three values \(X, y, Z\).

You have to tell the computer the plane from which it has to start the movements.

\section*{Indication on the Screen}




\section*{Input of program}

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \(\stackrel{\mathrm{G}}{\text { (M) }}\) & \[
\text { (J) }{ }^{x}(0)
\] & \[
\text { (K) }{ }^{Y}(\mathrm{~S})
\] & \(z\) &  \\
\hline 00 & 00 & 3000 & 0 & 0 & \\
\hline -01 & 00 & 0 & 0 & \(-2000\) & \\
\hline 02 & M30 & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}



\title{
Operating Elements - CNC Program Input
}

\section*{Option Key Hand-Operation/CNC-Operation} \(\mathrm{H} / \mathrm{C}\)


By pressing key H/C the moce of operation changes from "hand-operation" to "CNCoperation".

The relative mode of operation is indicatea by the lamps \(\underset{\boldsymbol{7}}{\boldsymbol{7}}\) (CNC-operation) or \({ }^{\text {滑 (hand-operation). }}\)

To put in a program it has to be switched to CNC-operation.

In the CNC-mode of operation you cannot move the slides by hand anymore.

\section*{The Word Indication}

The Lamps and light bars of the word incucation show you which data you can put in.

\section*{Digital read-out}

The actual words are indicated by lamps


\section*{Monitor}

The actual words are indicated by a light bar.

CNC-OPERATION


> Address indication \(-\mathbf{G}\), M function If depends on \(G\) or M-functions which addresses and/or data are required? \(\frac{\text { E.g. MOG }}{\text { MC6 requires a } D, S, Z, T \text { information. }}\)

\section*{Digital read-out}

The X -indication is also valid for the D-value, the \(Y\)-indication for the \(S\) value and the \(F\)-indication for the \(T\) value if M06 was programmed.


\section*{Monitor}

The adaress letter \(D, S, T\) are indicated.

CNC- OPERATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\(N\) & \(G\) & \(X\) & \(Y\) & \(Z\) & \(F\) \\
00 & & & & & \\
01 & & & & & \\
02 & & & & & \\
03 & MOG & D & S & & & \(T\)
\end{tabular}

\section*{The Indication of Addresses D, J, K, L, T, M on the Screen}


\section*{G25/G27}

The address letter Lis inaicated. ( \(\Sigma=\) jump adaress, subroutine address)


\section*{Format M06}

Addresses
- D (milling cutter radius)
- \(S\) (spindle speed)
- T (tool number)
are indicated.

CNC OPERATION


\section*{Format M99}

Adciresses
- J (start of arc of circle)
- K (end of arc of circle)
are indicated.

\section*{Attention:}

X,Y,F lamps are valid for various adaresses.

\section*{The Figure Keys}


You use the figure keys in order to enter the various values for address letters \(X, Y, Z, F, G, M, D, T, L, J, K\).
The entered values appear on the digital read-out and/or on the screen of the monitor.

\section*{The Minus-Sign Key \(\square\)}

\(X, y, z\) values can have a minus or a plus sign.

Plus sign input for \(X, Y, Z\) :
Put in figures only.


\section*{Minus sign input}

After input of figures, press \(\square\) key. The minus sign appears as a bar on the digital read-out.

Example:
\(x=-1400\)
Input: 140\(] 0]\)

\section*{The INPKey = Memory Key}
\begin{tabular}{rl}
{\([\) INP \(=\)} & Abbreviation for Input \\
{\([\) INP \(=\)} & Instruction to the computer to \\
& register the entered value.
\end{tabular}


\section*{Note}

With INP you can also jump forward in the block.

\title{
The \(\rightarrow\) Key Instruction: to jump forward within one block
}


By pressing the key \(\square\) the program will jump to the next word. The entered value of the next word will appear on the digital read-out.
(Permanent function when you keep on pressing the key)
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & (M) & (3) \({ }^{\mathrm{x}}\) (0) & (K) \({ }^{Y}(\mathrm{~S})\) & z & \(\stackrel{F}{F}(\mathrm{H})\) \\
\hline & & & & & \\
\hline \% & \% & W\% & W & \% & \% \\
\hline \% & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\title{
The FWD Key Instruction: to jump forward block-by-block
}



\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{G}
\] & \[
(\mathrm{J}){ }^{\mathrm{X}}(\mathrm{D})
\] & \[
\left(K^{Y}{ }^{Y}(S)\right.
\] & \(z\) &  \\
\hline & & & & & \\
\hline & & & & & \%... \\
\hline ॠ. & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
(\mathrm{J})^{\mathrm{x}}(\mathrm{D})
\] & \[
\left(\mathrm{K}^{Y}{ }^{Y}(\mathrm{~S})\right.
\] & \(z\) &  \\
\hline & & & & & \\
\hline & & & & & \\
\hline \%... & & & & & \\
\hline \% & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
2. If a block number is indicated: when
pressing the EWD key the program jumps to the next block number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(N\) & \[
\underset{(M)}{G}
\] & \[
\text { (J) }{ }^{X}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & \(z\) & \(\stackrel{\text { (L) (T) }}{(\mathrm{H})}\) \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \%... & & & & & \\
\hline \%, /. & & & & & \\
\hline
\end{tabular}
1. A given word is displayed. By press ing the FWD key the program jumps to the next block number.
3. If you keep the [FWD key pressed down, the program will jump block-by-block to the program end.

\title{
The REV Key Instruction: to jump back in program blocky-by-block
}


\section*{Function:}
1. A given word is on the display. If you press key \([\) REV the program jumps to block number \(N\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
\left.(\mathrm{j}){ }^{\mathrm{X}} \mathrm{D}\right)
\] & \[
(\mathrm{K})^{Y}(\mathrm{~S})
\] & \(z\) & \[
(\mathrm{L})(\mathrm{F})(\mathrm{H})
\] \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline , & & & & & \\
\hline \%. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(\mathrm{M})}{ }
\] & \[
{ }_{(\mathrm{J})}^{\mathrm{x}}(\mathrm{D})
\] & \[
(\mathrm{K})^{Y}(\mathrm{~s})
\] & \(z\) & (L)(T)(H) \\
\hline \%. & & & & & \\
\hline , & & & & & \\
\hline
\end{tabular}
2. If block number \(N\) is indicated and you press key REV] then the program will jump to the previous block number.
3. If you keep the [REV] key pressed the block number jumps back to NOO (permanent function).

\title{
The DEL Key \\ = Delete key, correction key
}

"DEL" is the abbreviation of "delete", which means to cancel, to extinguish.

You can delete only the value of the address letter which is indicated. If you correct a X-value e.g., the address letter \(X\) has to be on the digital readout.

\section*{Attention:}

With DEL only the digital read-out is cancelled, not the value in the registex. You must put in a new value and store it with INP.

Example: You want to change value \(X\) from 520 to 250.
1. Press DEL key, the value 520 will disappear.
2. Put in the correct value (250).
3. Press INP key, value X is registered; Light jumps to the next address letter.

\section*{Input of M-Values}


If you want to put in M-values: at first you have to select the M-key. The M-value is programmed in the G-column.

Digital read-out

\section*{Example}

Monitor


\section*{Attention:}
+ M-values are not taken over by pressing INP
+ If you press INP after M30, the program jumps back to NOO.

\title{
Take-Over of registered Values into the following Blocks
}

By pressing [MP the register takes over the previously entered value of the relative word column.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & \[
\underset{(M)}{G}
\] & \[
(\mathrm{J})^{\mathrm{x}}(\mathrm{D})
\] & \[
(\kappa)^{Y}(S)
\] & 2 & \[
(\mathrm{L}) \stackrel{\mathrm{F}}{\mathrm{~T}}(\mathrm{H})
\] \\
\hline 00 & 00 & 2000 & 3000 & & \\
\hline 04 & 00 & 0 & 0 & \(-4000\) & \\
\hline 02 & & & & & \\
\hline 03 & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Example 1}
- G-address is shown
- INP
- G-value flashes shortly and is registered
- Word indication jumps forward


\section*{Example 2}
- You want to put in the value \(Z=0\) in biock NO3.
- You happen to see that the Z-value in block NO1 should be -1000 and correct the value.
- Arter correction you carry on with the \(z\)-value input of block NO3.
- If you press INP the register takes over the previously entered z-value, i.e. -1000 .

\section*{Attention:}

M-values and inputs are not taken over with INP.

\section*{Inserting and Deleting of Blocks}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\([\sim]+\) INP} & N & \[
\underset{(\mathrm{M})}{\mathrm{G}}
\] & \[
{ }_{(\mathrm{J})}^{\mathrm{x}}(\mathrm{D})
\] & \[
(K)^{Y}(S)
\] & 2 & \[
\stackrel{F}{\text { (L) }}(\mathrm{T})(\mathrm{H})
\] \\
\hline & 00 & 00 & 1500 & 400 & 0 & \\
\hline & 01 & 01 & 0 & 0 & 60 & 100 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{4}{*}{\(\underset{+03}{+}\)}} & 01 & 250 & 0 & 0 & 100 \\
\hline & & 00 & 0 & 0 & -60 & \\
\hline & & M30 & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 00 & 00 & 1500 & 400 & 0 & \\
\hline 01 & 01 & 0 & 0 & 60 & 100 \\
\hline 02 & 21 & & & & \\
\hline 03 & 01 & 250 & 0 & 0 & 100 \\
\hline 04 & 00 & 0 & 0 & -60 & \\
\hline 05 & 130 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 00 & 00 & 1500 & 400 & 0 & \\
\hline 01 & 01 & 0 & 0 & 60 & 100 \\
\hline 02 & 01 & 0 & 120 & 0 & 100 \\
\hline 03 & 01 & 250 & 0 & 0 & 100 \\
\hline 04 & 00 & 0 & 0 & -60 & \\
\hline 05 & 30 & & & & \\
\hline
\end{tabular}
\(\begin{aligned} & \sim \\ & \sim \\ & \sim\end{aligned}+\overline{D E P}=\) Inserting a block
Remark 1:
First press key [ \(\sim\) and then key INP (keep \(\square\) pressed).

Remark 2:
Pemanent function when you caxry on pressing (more than \(0,6 \mathrm{sec}\). ), \(i . e\). you insert permanently empty lines with G21.

\section*{Example: Inserting \(\sim+\) INP}
+ Digital read-out shows block-NO2.
+ Press \(\square+I N D\)
+ In block NO2, G21 is automatically wxitten.
+ The original block No2 is automati. cally changed over to NO3 - also all subsequent blocks to the next block number.
+ In block NO2 you can program required
instructions as you want.

\section*{Procedure}
+ Delete G21
+ Put in wanted block

Example: Deleting \(\sim\) DEL
+ Digital read-out shows NO2
+ Press \(\square+D E L\)
+ NO2 is deleted
+ All subsequent blocks are backnumbered: NO3 - NO2, NO4 - NO3, etc.

\section*{Deleting of a registered Program}


\section*{Possibility 1}

Switch off main switch.

Possibility 2
press emergency stop button.

\section*{Possibility 3}

A certain block number is indicated ( \(\mathrm{NOO}, \mathrm{NO}, \mathrm{NO} 2 \ldots\).

\section*{Procedure}

First press key DEL then INP (DEL remains pressed).

The registered program is deleted. The digital read-out shows NOO.

\title{
The Program Sequence
}

\section*{1. Testrun}

The program runs in the computer. There are no instructions given for slide movements.

\section*{2. Single-block operation}

The program is worked off block by block. The slides move as programmed.

\section*{3. Automatic operation}

The total program is worked off. Switching instructions are carried out.

\section*{1) Testrun}

The program runs "in the mind". The instructions for slide movements are not given.

\section*{Purpose of the testrun:}
- Block mistakes are shown.
- With absolute programming mistakes of the linear or circular interpolation are indicated (e.g. if you programmed movement in 3 planes simultaneously or you determined the target point of the quadrant uncorrectly, etc.).

If you have programmed subroutines or jump instructions you can check the oraer of the instructions.

\section*{Activation of testrun:}
1. CNC-operation

2. Indication has to be on \(N\)-address
3. Press M-key:
the indicated block is worked off.
4. Press M-key:

The following block is worked off.
etc.

\section*{2) Single block operation}

In the testrun you do not see whether you run with e.g. GOO into the workpiece or whether \(\pm\) directions are correct. This you see in the single block or in the automatic operation.

\section*{Example:}

\section*{1. BLOck NOOO}
- Block indication is at NOOO.

2. Block NOO1

Press again 1 START.


Block NOO1 is worked off.


The screen shows "dwell in block Noo2".

In this way the program can run in single block operation.

\title{
Single block operation
}

\author{
(continued)
}


\section*{Various blocks in single block operation:}

If you e.g. press keys [3] + START, there will be 3 blocks worked off. You can work off up to 9 blocks in one go (3) + STARTI .

\section*{Dwell in single block operation}

Press [NP + FWD.
The siides stop.
If you press START the program continues.

\section*{Interruption of program}

Press INP + REV.
The program jumps back to N000.

\section*{3) Automatic operation}

- Set block indication to Nooo.

Possibility 1
Press REV key, until Nooo is indicated.
Possibility 2
Display shows any given block number. Press INP + REV, indication jumps to NOO.
- Fress key STARTI. The program runs until a hold or until m3o.

\section*{To continue program after hold}

Press key START.

\section*{Program Hold}
- Programmed hold Moo.
- In connection with MO6, if under the adaress \(T\) ( \(F\) ) a number 1 to 499 is programmed (with inch operating mode 1 to 199). If under \(T=0\) is programmed, there is no hold.

\title{
Interventions during Program Flow
}

\author{
1. Program stop \\ 2. Programm interruption
}

\section*{1. Program stop}
\[
\mathrm{INP}+\mathrm{REV}
\]

Press keys TNE + REV. The program jumps back to NOO (start).


\section*{Pay attention:}

If you press START key after [INP + REV, the program starts with NOO. Your tool is not in starting position! Collision!

New start: Measures
Position the tool in program start position.

Sonst Kollisions-
gefahr und falscher
Programmablauf

\section*{2. Program Interruption}

\author{
INP + EWD
}


The progran is stopped.
To continue program:
Press key START.

\section*{Why program interruption?}

You may e.g.
- change the feed
- take measurements
- switch over to hand operation and carry out a correction by hand
- correct program, etc.

\section*{Effectiveness of Corrections with Program Interruption}

1. Corrections of feed:

Feed corrections become effective in the interrupted block.
2. Corrections of \(G, M, X, Y, Z\)-values in the interrupted block are only effective in the following program run.
3. Corrections of G,M,X,Y,Z-values in subsequent blocks will be effective when the program is continued.

\section*{9. ALARM SIGNS}
- Purpose of alarm signs 9.1
- Procedure in the computer when
9.2 input is wrong
- Alarm survey, possible inputs 9.4
- Measure when alarm sign appears 9.5
- Alarm signs, details 9.7-9.15

\section*{A05: M30 instruction missing}

With START the computer checks if M30 (program end) was programed.

\section*{A06: M03 instruction missing}
```

(MO3 main spindle ON)
This alarm only appears if threading
cycles are programmed.
Attention:
The main spindle switch has to be in
CNC-position!

```

\section*{A08}

A09
A10
A11
A12 A14

Compare tape operation

\section*{A13: Inch/mm or vertical/horizontal switch with full program memory}
```

This alarm cannot be cancelled by TNP

+ REV. You have to switch back into the
original position. If you have put in
a vertical mill program with switch po-
sition at horizontal mill, you have to
enter the program new (with correct
switch position).

```

\section*{A15: Wrong Y-value}

For admissible data see chart.

\section*{A16: Cutter radius data missing}

If a G72, G45, G46,G47,G48 instruction is called, there has to be programmed a MO6 information with cutter radius data
(D) in one of the previous blocks. Without this information the computer cannot calculate the center point path.

\section*{A17: Wrong subroutine}

If a subroutine is nested more than 5 times, an alarm is shown.

\section*{A18: Movement of cutter radius compensation smaller 0}


Example: substract cutter radius once

MO6/D500/S \(\ldots . . / Z \ldots / E \ldots\)
G46
G00/X3000/Y \(=0 / Z=0\)

Cutter moves 30 minus \(5=25 \mathrm{~mm}\)

\[
\begin{align*}
& \text { M06/D500/S } \ldots / Z \ldots / \mathrm{Z} \ldots  \tag{2}\\
& \mathrm{G} 46 \\
& \mathrm{GOO} / \mathrm{X} 500 / \mathrm{Y}=0 / \mathrm{Z}=0 \\
& \frac{\text { No movement }}{\text { Cutter radius }}=\text { traverse movement }
\end{align*}
\]

(3)

M06/D500/S..../Z..../F...
G46
\(600 / X 300 / \mathrm{y}=0 / \mathrm{Z}=0\)

Aiarm

Movement \(X=300\) is smaller than cutter radius. 300 minus \(500=-200\).


\section*{Special case - Alarm A18 with pocketing}

The first measure for the pocket has to be larger or equal.
```

 Cutter dia + 0,I cutter dia.
    ```

\section*{Example:}

Cutter dia. 10 mm
Minimum measure for pocket
\[
a+0,1=10+0,1 \times 10=10,1 \mathrm{~mm}
\]

Reason:
Finishing out \(2 \times 0,1 \mathrm{R}\) (radius) is fixed in cyole G72.

\section*{Alarm Signs}
```

Purpose of alarm signs:
If you put inand store data which the conm
puter does not know, if you forget some-
thing or program a wrong block, then the
computer gives an alarm sign.
The aiarm sign appears on the digital read-out in form of a certain alarm number, on the monitor you get a commentary too.

```


CNC-OPERATION
|N|G|X|Y|Z|F| A01 WRONG G/M INSTRUCTION

\title{
What happens when wrong data is put in - Alarm sign
}

We put in a x-value 50000, i.e. for the cross slide a traverse path of 500 mm .
1. The secretary (interface element) reports:
"They want \(X=500001\) "
2. The director (central processing unit, microprocessor) asks his specialists:
"Can we execute \(x=50000\) ?"
3. The specialists (operating program) answer:
"No, Mister Director! X 50000 is too high!"
4. The director instructs his speaker (output element):
"Tell them out there, we cannot do it! X 50000 is too high, put in alarm sign AO2!"

\section*{What happens when wrong Data is put in?}

Data Input:

nterface element (Secretary)

Data on digital read-out


Output element (Press. Speaker)


Operating program
\(=\) EPROM
(specialists)
Memory = RAM


\section*{Alarm Signs}
(Survey)

AOO: Wrong G/M instruction
A01: Wrong radius/M99
AO2: Wrong X-value
A03: Wrong F -value
A04: Wrong Z-value
A05: M30 instruction missing
A06: M03 instruction missing
A07: No significance

A08: Tape end with tape operation SAVE
A09: Program not found
Alo: Writing protection active
A11: Loading mistake
A12: Checking mistake
A3: Inch/ma switching with full program memory
A14: Wrong mill head position/path unit with LOAD \(1 / \mathrm{M}\) or \(-1 / \mathrm{M}\)

A15: Wrong Y-value
A16: Cutter radius data missing
A17: Wrong subroutine
Al8: Movement cutter radius compensation smaller \(O\)

\section*{Possible Inputs}
(otherwise alarms possible)
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Metric \\
Values
\end{tabular} & Fineness (mm) & \begin{tabular}{l}
Inch \\
Values
\end{tabular} & (inch) \\
\hline \(\mathrm{X}_{\nabla}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & 0-7999 & 1/1000" \\
\hline \(\mathrm{X}_{\mathrm{H}}\) & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & \(1 / 1000^{\prime \prime}\) \\
\hline \(Y_{V}\) & 0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & 1/1000" \\
\hline \(Y_{H}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & 0-7999 & 1/1000" \\
\hline \(\mathrm{Z}_{\mathrm{VE}}\) & 0-19999 & \(1 / 100 \mathrm{~mm}\) & --7999 & 1/1000" \\
\hline Radif & 0-9999 & \(1 / 100 \mathrm{mma}\) & 0-3999 & 1/1000" \\
\hline \(\mathrm{D}(\mathrm{X})\) milling cutter radius with MO6 & -0-9999 & \(1 / 100 \mathrm{~mm}\) & 0-3999 & 1/1000 \({ }^{18}\) \\
\hline F & 2-499 & min/min & 2-199 & 1/10"/m \\
\hline \(T(F)\) tool address M06 & 0-499 & 1 & 0-199 & - 1 \\
\hline L(F) jump instruction: G27 & \multicolumn{4}{|c|}{O-221} \\
\hline \(\mathrm{H}(\mathrm{F})\) exit signs M26 & \multicolumn{4}{|c|}{0-299} \\
\hline J/K circular parameter & \multicolumn{4}{|c|}{0-90} \\
\hline
\end{tabular}

\section*{Measures when Alarm appears}

\section*{Alarm is on}


\section*{Note:}
- Alarm A13 can be cancelled only by operating the option switch metric/inch, horizontal/vertical.
- Alarm sign of tape operation please compare chapter tape operation.

\section*{A00: Wrong G/M instruction}

Example: G12, M55

\section*{A01: Wrong radius/M99}

Possibility 1: Radius larger than admissible values

Possibility 2: Wrong value fox end coordinates PE of quarter arc
Example: incremental value programming
N.../GO2/X1000/Y1500/

Cooxdinates \(X=1000 / Y=1500\) cannot be end coordinate of quarter arc.

Example: absolute value programming
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \(G\) & \(X\) & \(Y\) & \(Z\) & \(F\) \\
\hline\(\infty\) & 90 & & & & \\
\hline 1 & 01 & 3000 & 2000 & 0 & 100 \\
\hline 2 & 02 & 4000 & 1000 & 30 & 100 \\
\hline 3 & \(M 30\) & & & & \\
\hline 4 & & & & Alarm \\
\hline
\end{tabular}
- In block NOI point pi is programmed.
- In block NO2 the quartex are is progranmed (coordinate P2). The \(X, y\) values are correct.
The Z-value would mean a circular inw terpolation in space (helix). This the computer does not know.

The alarm sign in this example does not appear when the program is put in but is on during the test run, automatic or single block operation.

\section*{Explanation:}

At programinput the computer just checks the contents of one block, it does not check the 2 -value of the previous block.

\section*{A02: Wrong X -value}

Compare chart for admissible values.

\section*{A03: Wrong F-value}

Compare chart for admissible values.

\section*{A04: Wrong Z-value}


This alarm appears only in the test run, single block or automatic operation because the mistake cannot be recognized at program input (computer does not check contents of previous blocks at pxogram input).

Example:
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(N\) & \(G\) & \(X\) & \(Y\) & \(Z\) & \(F\) \\
\hline 0 & 90 & & & & \\
\hline\(\vdots\) & & & & & \\
10 & 00 & 0 & 1500 & 3000 & \\
\hline 11 & 00 & 3000 & 0 & 0 & \\
Alarm
\end{tabular}

Monitor shows: Wrong \(Z\)-value; the computer accepts the \(X, Y\) values since it can carry out this interpolation and indicates the value shown last as being wrong value.

Attention:
Maybe you wanted to program \(Z=0\) and Y1500 instead of 0 . The computer cannot know this. The computer indicates \(Z\) as wrong value since it does not know your thoughts.

\title{
Chapter 10 \\ Casette Operation \\ RS-232C Operation
}

\section*{Magnetic Tape Operation}

The tape enables you to store programs and to feed them into the computer memory.


\section*{1. Storing on tape}

To transmit from computer memory to tape: We call this mode of operation SAVE or CHECK.


\section*{Some data}
- Renory capacity per tape side: approx. 400 blocks.
- Operation time per tape side: approx. 90 sec .

\section*{Operation advice}
1. Use only digital cassettes
2. Erase new cassettes completely (see page 7.23). The test impulse from the Einal control of the producer can cause Alarm A11 or A12.
3. Main drive motor must not run during LOAD, CHECK, SAVE and ERASE operation.
4. Do not put down tape near main motor.

\title{
Magnetic Tape Operation
}

\section*{Transmission of a program from machine memory to magnetic tape \\ Mode of operation \\ SAVE = transmit from machine memory to magnetic tape CHECK = control of transmitted (loaded) program}
1. Press key \(\rightarrow\) until word indication \(G\) lights up. Press key DEL, The indicated value disappears from the digital read-out.
2. Put in G65.

Press keys 6][5] [NP, on the read-out you see \(C\) indicated. \(C[\square]\) magnetic cassette tape operation.
3. Press key FWD.

On the read-out appears \(\square\)
4. Put in program number.

You can put in figures 000-099

The sequence of the figures can be chosen as you like. Example for input of a program with number 76: Press keys 7] [6].
5. Press key INP.

The transmission / loading starts.
5.1. First free space on the tape is sought.

If thexe are not data on the tape, it will advance approx. 4 sem conds and rewind approx. 2 seconds.

Band without data on:

```

If there are alreacy data/programs loaded on the tape, then the tape will advance to the end of the program which was loaded last. Then advance 4 seconds and rewind 2 seconds.

```

马ape with proqrams alyegdy boaded:


\subsection*{5.2. Transmission operation SAVE}

The digital read-out ingicates \(\bar{C}|T| A \mid D\)
SA is the abbreviation for SAVE.
The program/data are "saved" from the machine memory - where they could be deleted - onto the tape.
5.3. At the end of the transmission operation the tape rewinds to the tape start.
5.4. Control operation CHECK

The digital read-out indicates \(C||C| H|\)
The data in the machine memory are compared with the data loaded on the tape.
If you have aiready programs loaded on the tape, then the digital read-out will indicate these on the read-out whilst the tape advances. It will advance to the program loaded last and then the "CHECK" will be carried out.

CHECK of loaded program

6. After CHECK the tape rewinds. The program is loaded on the tape.

\section*{Transmission of program from tape to machine memory}

\section*{Mode of operation LOAD}
1. Press key \(\rightarrow\) until word indication \(G\) lights up. If a figure of the G-function appears, press key DEL. Then indication on readmout disappears.
2. Put in G65.

Press keys \(6[5]\)
3. Press key INP.

Read-out indicates \(C \mid[P]\).
4. Put in number of program.

5. Press key INP.
5.1. The program number 76 is looked for.

If you have othex programs on the tape already, then these numbers appear on the digital read-out.
E.g. \(\mathrm{C} \mid\) |P|7|4] or \(C|\bar{P}| 75\)
5.2. Loading:

When the wanted program 76 is found, the loading operation starts.
On the digital read-out you see \(C[L T O]\)
Lo is the abbreviation for "load".
5.3. After the loading is cone, the tape rewinds. The read-out shows Noo. Program number 76 is stored in the machine computer.
6. If you press key START then the program starts operating.


From tape to machine
\begin{tabular}{|c|c|}
\hline LOAD & SAVE, CHECK \\
\hline \begin{tabular}{l}
1. Put in 665 \\
G
\end{tabular} & \begin{tabular}{l}
1. Put in G65 \\
\(G\)
\(\square\)
\end{tabular} \\
\hline 2. Press INP & 2. Press TNP \\
\hline 3. Press INP
\(\square\) \(C||P| \square\) & 3. Press FWD \\
\hline 4. Put in program number
\[
C|P \cdot| \cdot
\] & 4. Put in program number \\
\hline \begin{tabular}{l}
5. Press TNF \\
Program is sought and will be loaded in machine.
\end{tabular} & \begin{tabular}{l}
5. Press InP \\
- Free space on tape is sought. \\
- Machine program is transmittea/ loaded on tape (sAve)
\end{tabular} \\
\hline
\end{tabular}
- Loaded program on tape is checked/ compared with machine program.
(C)|C|H|
6. If operation is through, then indication on read-out:

N
प100

Program can be started.

\title{
Alarm Signs - Tape Operation (Summary)
}
```

AO8 - Tape end reached during loading of
program from machine memory to
tape (only with mode of operation
SAVE)
A09 - Selected program cannot be found
(mode of operation LOAD). Tape is
full. MO6 is not put in in selected
program (mode of operation LOAD).
Alo - Writing protection active
All - Loading mistake
Al2 * Checking mistake

```

\section*{General}

When switching off machine (also when current breaks down an interference pulse is put onto the tape. This interfexence pulse does not have any effect since the loading start only after 2 seconds of tape advance.

Thus:
Tape has to be rewind (automaticaliy). Never take tape out during rewind opexation.


\section*{Alarm sign A08:}

\section*{Only when using mode of operation "SAVE'!}
```

Reason
Tape finish during loading (SAVE) from
machine memory to tape.
(AOB only when using mode SAVE)
Alarm-sign AO8 appears on digital read-
out.

```

\section*{Measures}
- Press INP and REV.

Tape rewinds to tape begin.
Digital read-out indicates NOO.
- Put in new tape and repeat loading operation.


\section*{Attention:}

IE you put in this tape and want to load the next finished program (transmit from tape to machine memory) AO9 appears " No program end found!

\section*{Alarm sign A09:}

Only when using mode of operation "LOAD"!

\section*{A09 - Reason 1}

Selected program not found.
If you call a non-existing program number when "loading" (from tape to machine memory), then alarm AO9 appears.

\section*{Measures}
- Press [TNP] + REV

The tape rewinds. The digital read-out indicates after that NOO.
- Look for program on another tape (in case you are sure you put it in).

Example: You look on this tape for program no. 5


\section*{A09 - Reason 2}

Selected progran not fully on tape (M06), since tape was finished when loading From machine memory to tape (already in mode of operation SAVE you had alarm AOB).

\section*{Measures}

Press INP + REV
Tape rewinds, read-out indicates Noo.
- Look for program on other tape (in case you are sure that you put it in)
```

Progran }19\mathrm{ Gces not have MO6, thus alarm
A08 was indicated already during mode of
operation SAVE.

```


\section*{A10 - Writing protection active:}

Only when using mode of operation "SAVE'" and"ERASE'!
```

If you remove the writing protection (i.e. the black caps) you cannot put any more data on this tape side.
If you put in such a tape side and you want to transmit a program from the machine memory to the tape, alarm sign Alo appears.

```


Measures:
Press INP + REV
Tape rewinds, put in other tape or mount writing protection again.

\section*{A11 - Load mistake:}

Only when using mode of operation "LOAD'!

\section*{A11 - Reason 1}

Motor is switched on or is being switched on during loading ttape-machine).
The program on the tape was not destroyed by switching on the motor.

\section*{Measures}
- Switch off motor
- press TNP + REV The tape xewinds, the read-out indicates NOO.
- Repeat loading operation.
- If you have All indicated also with the following loading operation, please see reason 2 .

\section*{A11-Reason 2}

The progran on the tape is destroyed. The reasons for \(i t\) could be a mechanical
fault on the tape, a power failuxe - of the machine was switched off when tape was not rewound.

\section*{Measures}

Transmit program to new tape.

\section*{Summary measures}


\section*{A12 - Check mistake:}

Only when using mode of operation 'CHECK/SAVE'!
```

Possible reasons:

- Tape faulty
- Interference pulse: main motor switched
on, shoxt power faslure, interference
pulse from electrical conductor llight-
ning, switching on of soldering trans-
former ...)
The interference pulses can happen both
when using mode of operations SAVE or
CHECR.

```

\section*{Alarm sign A12 in mode of operation "SAVE" - Remedy}

Store program under another number.

\section*{Explanation:}

You canot delete the false program just by its own. Thus you have to give to this program a new number, if you store in on the same tape. If you would use the same program number, then alarm All would appear when loading (tape - machine) since only the first one of two identical program numbers can be called on.

\section*{Measure:}
- Put in INP + REV tape rewinas, readout shows Noo.
- Put in same program under a new number.
- If aiarm A12 appears again, then tape is defective.

Interference duxing sAvE


Same program has to be put in under new program number.


\section*{Alarm sign A12 in mode of operation "CHECK"}
```

During CHECK operation there may occur
an interference impulse and alarm sign
A12 will be indicated, without a defec-
tive tape being the reason.
Check:

- Press TNP + PEV.
Tape rewinds to begin, on read-out NOO.
- Load tape into machine memory. If
there is no alarm All when loading,
then the program is o.k.
- During Loading All is indicated: the
following is necessary - New tape, de-
lete complete tape or put in program
anew under another number.

```


\title{
Mode of operation'ERASE" (Erasing the tape)
}
```

1. Press key }->\mathrm{ until word indication
G lights uo. If you see a figure of
a G-function indicated on the aigi-
tal read-cut, then press DEL.
2. Put in 665
Press \overline{E}5 INP, on the display you see
see CID,
3. Pressm+DED at the same time,
on the display you see CTTETYT
The tape is erased.
After that the reaq-out shows NOO
```

\title{
Program Interruption during Tape Operation
}
```

Only when ushng mode of operation LoAD.
CHECK, ERASE.
program intexcupbion
Press RNP + REV,
Tape rewinds to tape begin.

```

\section*{Why program interruption?}
```

When using moce of gperation EOAD:
If you find out that you called a non-
existing program. IE You prese rNP +
REV] the tape will not advance to the
tape end but rewind immediately.
Wen using mode OF QPeration CHECK:
If you do not want to walt for CHECK
operation.
When using mode of operation ERASE:
It is enough that you erase about io
seconds. Wher loading anew the tape
machime will exase automaticaily ali
other rematning data.

```

\section*{When putting in the Tape, pay Attention:}

\section*{1. Putting in with left spool full}

- If you switch off the machine, the tape advances i second.
\(\qquad\)
- If you switch on the machine, the motor rewinds the tape 2 seconds. So it is made certain that the tape is at the very begining.

\section*{2. Putting in with right spool full}

- If you put in the tape and program G65, then the tape rewinds to the begining.
- If you put in the tape and not program G65, and switch on and off the machine, the following happens:


Switch on:


The tape rewinds 2 seconds.
Switch ofe:
The tape advances 1 second.


If you carry an iike this, the tape moves further through the switching on and off and you get an interference pulse on the tape. A stored program will be registered.

\title{
RS-232 C Operation - G66 V24 Operation 20 mA Operation
}
```

RS-232 C is an international standardized
Interface.
It is an Unterface fox infommation inter-
change. Via this Interface data can be transmitted to peripheric apparatus and vice-versa.
The data are transmitted via a cable. For the specific apparatus a cable has to be connectec by an expert.
The description how to connect cables are found in the wiring diagrams of the producers.

```

\section*{Some Examples}

\section*{Connecting a paper tape puncher and paper tape reader}

The program of the Fl-CNC can be punched on a paper tape:

Vice-versa:
From a paper tape the program can be transmitted to the Fl-CNC.

\section*{Printing a program}

Via the RS-232 C Interface the program in the FI-CNC can be printed on a list.

\section*{Connection of computers}

Via RS-232 C computers and computer systems can be linked to the Fi-CNC. Programs can be transmitted to the F1-CNC and vice-versa.

For computer connection a specific Software is necessary.
The software is an encoding information which "translates" the code of the computer to the code of the machine. This Software has to be written by an expert for the specific computer type.

\section*{Activating RS 232:}

RS 232 is activated via G66. G66 does not enter the memory, it is a switching function.

\section*{Examples:}

\section*{- Transmission from paper tape to memory of F1-CNC}
(With "kequest to send" signal)
- Switch to CNC-mode (memory must be empty)
- Irsert paper cape
- Start paper tape veader


\section*{- Transmission from paper tape to F1-CNC (without "Request to send" signal)}
- Insert paper tape
- Switch to CNC-mode

1. Program G66
2. Press ZNP The display shows \(A\)
3. Press INP The display shows A E D O
4. Start paper tape xeader (transmission begins)
- Transmission from F1-CNC to paper tape (with or without "Request to send" signal)
- Switch to CNCmode
- Insert paper tape

- Start paper tape puncher
1. Program G66
2. Press TNP Display shows A 0
3. Press FWD. Display shows \begin{tabular}{|c}
000000 \\
\hline\(\quad 5 A\)
\end{tabular}
\((S A=S A V E)\)
The paper tape is punched.

PROGRAM SHEET EMCO F1 CNC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N & \(\xrightarrow{G}\) & \[
\text { (J) }^{x}
\] & \[
(K)^{Y}(S)
\] & \(z\) & \(\stackrel{F}{\text { (L) (T) }}\) (H) & Remarks & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{3}{|l|}{Part Nr.} & \multicolumn{2}{|l|}{Part Name} & Sneet Nr. &  & \(\mathrm{mm} \quad \square\) \\
\hline \multicolumn{3}{|l|}{Program Nr.} & Name Date & \multicolumn{2}{|l|}{Date} & \[
\square
\] & inch \\
\hline
\end{tabular}

PROGRAM SHEET EMCO FI CNC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & ( (m) & (4) \({ }^{\text {(0) }}\) &  & = & (u) ¢ \(_{\text {c) }}\) & \multicolumn{2}{|l|}{Renames} \\
\hline & & & & & & \multicolumn{2}{|l|}{\(\square\)} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \(\square\) & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline - & & & & & & \multicolumn{2}{|l|}{} \\
\hline  & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline & & & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{cc|cc}
\(\square-\square\) & mm \\
\(\perp\) \\
\(\perp\) & \(\square\) & inch \\
\hline
\end{tabular}}} \\
\hline w & & & & & & & \\
\hline
\end{tabular}

PROGRAM SHEET EMCO F1 CNC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & \({ }_{6}^{\text {¢ }}\) & (0) \({ }^{\text {x }}\) ( \({ }^{\text {a }}\) & (4) \({ }^{\text {s }}\) ) & & & 14.5 & Rements & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {bomen }}\)}} & \multicolumn{2}{|l|}{mmem} & & smem & \multirow[t]{2}{*}{-1
\(\perp\)} & \\
\hline & & & & & & & & \(\square\) \\
\hline
\end{tabular}

PROGRAM SHEET EMCO F1 CNC


\section*{PROGRAM SHEET EMCO F1 CNC}


PROGRAM SHEET EMCO F1 CNC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * & (in) & (1) \({ }^{\text {(0) }}\) ) & \(\mathrm{m}^{2}(\mathrm{~s})\) & = & (ufixu & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{Remats} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline  & & & & - & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline - & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} \\
\hline senm & & & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{l|l|l}
\hline-1 & \square & \mathrm{~mm} \\
\perp & \square \\
\perp & \square & \text { inch } \\
\hline
\end{array}
\]}} \\
\hline \%eme & & & & & & & \\
\hline
\end{tabular}



.




Tool Data Sheet


Tool Data Sheet


\section*{Tool Data Sheet}


促

促```

